ENTROPY AND DATA COMPRESSION - compression software (ZiP, RAR, efc) exists File Zil New File ZIP File 1GB compression 700 MB decompres. 1GB encoding decoding compress again 700 MB O Classical (Shannon) entropy - let Z be a finite alphabet $\Sigma = \{\chi_1, \chi_2, \dots, \chi_d\}$ $d=[\Sigma]$ $examples \qquad \Sigma = \{0,1\}; \ \Sigma = \{a,b,C,...,2\}, ek$ - Let P(I) the set of probability dist. on I $P(\Sigma) = \begin{cases} p: Z \rightarrow IR_{+} : \Sigma \\ \uparrow \\ \chi \in \Sigma \end{cases} p(\chi) = I \end{cases}$ aeR, a>0 -> If I is numeric, X is a random variable $\mathbb{P}(X=x) = p(x) \quad \forall x \in \Sigma$ $() E[X] = \sum_{x \in X} p(x) \cdot \mathcal{X}$

X random variable $\mathbb{P}(X = x \in \Sigma) = p(x) \quad X \sim p.$ - a source is a device which produces letters from Z · independently : each letter is independent from the old ones · each letter has distribution p ~ Goal: compress (as well as possible) and enter to decompress sequences produced by the source' SOURCE P D ENCODE DECODE -> seq $X_{1},...,X_{m}$ Seq Seq fo,1 $from K_{rot}X_{m}$ (D,1)(l << m)Want $(Y_1, \ldots, Y_m) \approx (X_1, \ldots, X_m)$ eccm- sequences of length 1, lossless L, "best" l: we want $Y_1 = X_1$ $l = H_0(p) = \log \left[\frac{1}{2} \frac{$

(3) Shannon's source coding theorem
- Lid source with prob.
$$p \in P(\Sigma)$$

-1 Lossy compression is allowed
 $R\left[(Y_{1},...,Y_{n}) \neq (X_{1},...,X_{n})\right] \leq S$
for some small error prob. $S \in (0,1)$
- Compression rate = number of bits = R
Definition $A(n, R, S)$ -code for a fixed
 $p \in P(\Sigma)$ is a pair of encoder-
decoder functions
 $E: \Sigma^{n} \rightarrow \{0,1\}^{\lfloor nR \rfloor}$
 $D: \{0,1\}^{\lfloor nR \rfloor} \rightarrow \Sigma^{m}$
such that $R\left(D(E(X^{m})) \neq X^{n}\right) \leq S$
 $(X_{n},...,X_{n})$
for $X_{n},...,X_{n}$ ind with dist p .
 $n = block length (seq. length)$
 $R = compression rate
 $S = error probability$$

Example
$$\Sigma = \{a, b, c, d\}$$

 $p(a) = p(b) = p(c) = p(d) = \frac{1}{4}$
 $uniform probability$
 $(n=1, R=2, S=0) - code = (E,D)$
 $E(a) = 00$
 $E(b) = 01$ $(l=2)$
 $E(c) = 10$
 $E(d) = 11$
and $D(00) = a$
 $D(01) = b$
 $D(10) = c$
 $D(11) = d$
Uperfect code =
 $S=0 = fxce\Sigma$, $D(E(x)) = x$
Theorem [Shannon's source ading hearem]
let $p \in P(\Sigma)$ and $s \in (0,1)$. Then
(A) If R>H(p), then there exists
 $a(n, R, S) - code$ for n large enough
(B) If R(H(p), then, for n large
enough, there does not exist
 $a(n, R, S) - code$

- this theorem is saying that the optimal asymptotic compression sate for an ild source is its entropy - probability of error d $\mathbb{P}(\mathcal{D}(\mathcal{E}(X^{m})) \neq X^{m}) = \sum_{m} P(X^{m})$ $\chi^{c} (x_1, \ldots, \chi_m) \in \Sigma^m$ $D(E(x^{n})) \neq x^{m}$ $\underline{but} \text{ id} = \mathcal{D} p(\mathcal{X}^{\mathcal{M}}) = p(\mathcal{X}_{n}) \cdot p(\mathcal{X}_{2}) \cdots p(\mathcal{X}_{n})$ - iid sequences from p (nlarge ensign) have the typicality property $\forall y \in \mathbb{Z} \quad [di: x_i = y] \approx n \cdot p(y)$ $P \in P(\Sigma)$, n bloch length, G > 0. The typical set Definition $T_{n, \varepsilon}(p) = \frac{1}{2} x^{n} \in \mathbb{Z}^{m} : \left| \frac{1}{n} \log \frac{1}{p(x^{n})} \right|$ $-H(p) \leq \xi$ Zm $= \{ \chi^{m} : \left| \frac{1}{n} \sum_{i=1}^{\infty} \log \frac{1}{p(\chi_{i})} - H(p) \right| \le \epsilon \}$

Properties of typical sets $\rightarrow \forall x^{n} \in T_{n,\xi}$ $2^{-n}(H(p)+\varepsilon) \leq p(x^{n}) \leq 2^{-n}(H(p)-\varepsilon)$ all sequences in a typical set have the same probability $\simeq 2^{-nH(p)}$ $\neg |T_{m,E}| \leq 2^{-n(H(p)+E)}$ typical sets are not too big $\neg \mathbb{P}[\mathbb{X}^{m}\notin T_{m,\varepsilon}] \leq \frac{\sigma^{2}}{m\varepsilon} \quad (**)$ where $\sigma^2 = Var \left(\log \frac{T}{p_{cas}} \right)$ recall that $H(p) = E \log \frac{T}{p_{cas}}$ typical sets are very likely -, buoot of B $\mathbb{P}(x^{n} \in T_{n, \varepsilon}) \leq 1$ $|T_{m,\mathfrak{L}}| \cdot \min_{\mathfrak{L}} p(\mathfrak{I}_{\mathfrak{L}}) \geq |T_{m,\mathfrak{L}}| \frac{-n(\mathcal{H}(p) + \varepsilon)}{2}$

(4) Proof of part (A) of Shannon's theorem - We are given a rate R > H(p). -> define $E = \frac{R - H(p)}{2} > 0$; consider $T_{n,\xi}$ $\widehat{(P)} = > (T_{n,\xi} | \leq 2^{n}(H(p) + \xi) \leq 2^{(nR)})$ 20,13 (nRS - consider any E: Tmis - doigne injective and its inverse D= { 0, 1] LNRS _____ True S.E. D(E(x)) = x +xETmis - extend E arbitracily from This to E (we do not care about what happens outside This is we shall make errors for wards Intras but these words are not very likely) - let us bound the error probability of the code we just introduced $\mathbb{P}\left(\mathcal{D}(\mathcal{E}(x^{n})) \neq x^{n}\right) \leq \mathbb{P}\left(\mathcal{X}^{n} \notin \mathcal{T}_{m,\varepsilon}\right)$ S for n large enough

Summary of the main proof idea - the encoder E: Im fo, 17 [nR] chechs whether xⁿ E Zⁿ is an element of a typical set This rif YES, encode it perfectly Is if NO, we do not care, encode it any way you like -1 the decoder decodes any ZE{q]} to an element yE This (perfectly) - this pair (DIE) works because · the sets This are small . The sets Tm, E have large probability

Examples True, since $p(x_0) = 1$ $p(x_{+}x_{0}) = 0$ H(p) = 0True, since the decoder can Always output "xo" (2) uniform source $p(x) = \frac{1}{1\Sigma_1}$ $H(p) = \log |\Sigma|$ best rate is $R = \log |\Sigma|$ -ono montrivial encoding/decoding scheme is possible L> why passing a file through ZiP twice does not increase compression rote

QUANTUM DATA COMPRESSION

L's in particular, if p is also pure g=14X41, then $F(lq\chi ql, lq\chi ql) - |\langle q, q \rangle|$ 3 Quantum encoders/decoders -> encoder : compress data from $\mathbb{Z}^n \longrightarrow \{0, 1\}$ -> decoder : decompress $\{0, 1\}^{LnRJ} \longrightarrow \mathbb{Z}^n$ "classical functions" quantum channels Definition An (n, R, S)-quantum code is a pair of quantum channels $\varepsilon: \mathcal{B}(\mathcal{H}^{\otimes n}) \longrightarrow \mathcal{B}(\mathbb{C}^2)^{\otimes \mathbb{L}^n \mathbb{R}})$ $D : B((\mathbb{C}^{2})^{\otimes L \cap R}) \longrightarrow B(\mathbb{H}^{\otimes n})$ s.th. $F(T_{A^{n}B}, [D \circ E) \otimes id_{B}](T_{A^{n}B})) \ge 1 - S$ A is the system H reference state (accounts for ent.) for all JAB s.t. JAN = TrB JAB = poor where p= Z p(x) px average state of the source

4 von Neumann entropy

<u>Definition</u> Gien a denisty matrix $P \in B(\mathbb{C}^d)$, its von Neumann (quantum) entopy is $H(p) = - Z \lambda i \log \lambda i$ where (dr, --, da) are the eigenvalues of p. vN Shannon - inherits all the properties of the classical ent: L) $H(p) \in [0, \log d]$ • H(p) = 0 (=) p is pure • H(p) = log d (=) p = -1/2 5 Schumacher's cooling theorem

Theorem Consider a data source with average state $\mathcal{F} \in \mathcal{B}(\mathcal{H})$, and $\mathcal{S} \in (\mathcal{O}, I)$.

(A) if R>H(p), then there exists no s.t.
∀ n≥no 7 (n, R, S)-quantum code for p
(B) if R∠H(p), then exists some no s.t.
∀ n≥no 7 (n, R, S)-quantum code for p

Proof idea Replace typical sequences Trais by
typical subspaces Smis
Smis = span of 1212 @ --- @ 12m >:

$$\chi^{m} = (\chi_{1}, ..., \chi_{n}) \in Trais$$

Is typical projections $TTrais$ on Smis
-- follow the classical proof by repacing
sets --> subspaces
functions --> channels