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In order to define a probability on a set we need a few basic elements,

e Sample space (2: The set of all the outcomes of a random experiment. Here, each outcome
w € 2 can be thought of as a complete description of the state of the real world at the end

of the experiment. 5 Socus | f} cdll sobsels o,f _jl

e Set of events (or event space) F: A set whose elements A € F (called events) are subsets
of Q (i.e., A C Q is a collection of possible outcomes of an experiment).".

e Probability measure: A function P : / — R that satisfies the following properties,

- P(A) > 0,forall A € F
- P(Q) =1
- If Ay, Ao, ... are disjoint events (i.e., A; N A; = () whenever ¢ # j), then

P(U;A;) = Y P(A))
dLls 'oi‘m\' union o«S— BQ"I)'
These three properties are called the Axioms of Probability.

Example: Consider the event of tossing a six-sided die.
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Example: 2 coins
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Properties:

- EAC B = P(A) < P(B).

. P(ANB) < min(P(A), P(B)). AaB - esweat ot both Aand B happen

- (Union Bound) P(AU B) < P(A) + P(B).

- P(QQ\ A) =1 — P(A). SUCA = AC - Hg @sent Hot A does nol vexo-ﬂ)e.n

- (Law of Total Probability) If A4, ..., Ay, are a set of disjoint events such that UleAi = (), then
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Conditional probability and independence

Let B be an event with non-zero probability. The conditional probability of any event A given B is
defined as, AnB cpg

B 2 Zzdes  Z(an £ £

In other words, P(A|B) is the probability measure of the event A after observing the occurrence of
event B. Two events are called independent if and only if P(AN B) = P(A)P(B) (or equivalently,
P(A|B) = P(A)). Therefore, independence is equivalent to saying that observing B does not have

any effect on the probability of A.

Example 1: 2 coins, probability that first toss is head, given that there is at least one head
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Example 2: 2 coins, probability that the second toss is tails, given that the first one is head
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2 Random variables

Consider an experiment in which we flip 10 coins, and we want to know the number of coins that
come up heads. Here, the elements of the sample space €2 are 10-length sequences of heads and
tails. For example, we might have wo = (H, H,T,H,T, H, H,T,T,T) € Q. However, in practice,
we usually do not care about the probability of obtaining any particular sequence of heads and tails.
Instead we usually care about real-valued functions of outcomes, such as the number of heads that
appear among our 10 tosses, or the length of the longest run of tails. These functions, under some

technical conditions, are known as random variables.

More formally, a random variable X is a function X : Q — R.? Typically, we will denote random
variables using upper case letters X (w) or more simply X (where the dependence on the random
outcome w is implied). We will denote the value that a random variable may take on using lower

case letters .

Example: In our experiment above, suppose that X (w) is the number of heads which occur in the
sequence of tosses w. Given that only 10 coins are tossed, X (w) can take only a finite number of
values, so it is known as a discrete random variable. Here, the probability of the set associated

with a random variable X taking on some specific value k is
P(X =k):=P{w: X(w) =k}).



Example: coin tosses - total number of Heads
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2.2 Probability mass functions

with Ledlecs ‘H o:—r}

When a random variable X takes on a finite set of possible values (i.e., X is a discrete random
variable), a simpler way to represent the probability measure associated with a random variable is
to directly specify the probability of each value that the random variable can assume. In particular,
a probability mass function (PMF) is a function px : {2 — R such that

px(z) = P(X = z).

In the case of discrete random variable, we use the notation Val(X) for the set of possible values
that the random variable X may assume. For example, if X (w) is a random variable indicating the
number of heads out of ten tosses of coin, then Val(X) = {0,1,2,...,10}.

Properties:

- 0<px(z) L1

- ZmEVal(X)pX(x) =1.

. ZmeApX(:c) =X e A}

Example: 10 coin tosses - A = between 2 and 5 Heads
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2.4 Expectation Calso PLfLch as fle Mecn o Hre acrcm.aw.)

Suppose that X is a discrete random variable with PMF px(z) and g : R — R is an arbitrary
function. In this case, g(X) can be considered a random variable, and we define the expectation or
expected value of g(X) as

Elg(X)]2 >  g(@)px(a).

zeVal(X)
Example: 2 coins, expectation of the number of heads #?C{HH:D/ H?[f HT/TH}>
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Properties:

E[a] = a for any constant a € R.

Elaf(X)] = aE[f(X)] for any constant a € R.

(Linearity of Expectation) E[f(X) + g(X)] = E[f(X)] + E[g(X)].
For a discrete random variable X, F[1{X = k}] = P(X = k).

Example: 10 coins, expectation of the number of heads
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2.5 Variance

The variance of a random variable X is a measure of how concentrated the distribution of a random
variable X is around its mean. Formally, the variance of a random variable X is defined as

Var[X] £ E[(X - E(X))’] ?p

Using the properties in the previous section, we can derive an alternate expression for the variance:

E[(X — E[X])))] = E[X?-2E[X]|X + E[X]?]
= E[X?] - 2E[X]E[X] + E[X]?
= E[X?] - E[X]%,

where the second equality follows from linearity of expectations and the fact that /[ X] is actually a
constant with respect to the outer expectation.

Properties:

- Var[a] = 0 for any constant a € R.
- Var[af(X)] = a®Var[f(X)] for any constant a € R.
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2.6 Some common random variables

e X ~ Bernoulli(p) (where 0 < p < 1): one if a coin with heads probability p comes up
heads, zero otherwise.

i iEj=1
p(x)_{l—p ifp=0

Jal) C)().—,fo)d
POc=a)-p  P(X=e)=4p

e X ~ Binomial(n,p) (where 0 < p < 1): the number of heads in n independent flips of a
coin with heads probability p.

p(z) = (n)px(l -p)" "
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e X ~ Geometric(p) (where p > 0): the number of flips of a coin with heads probability p
until the first heads.

p(x) = p(1 — p)°~*
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3 Two random variables

Thus far, we have considered single random variables. In many situations, however,
there may be more than one quantity that we are interested in knowing during a ran-
dom experiment. For instance, in an experiment where we flip a coin ten times, we
may care about both X(w) = the number of heads that come up as well as Y (w) =
the length of the longest run of consecutive heads. In this section, we consider the setting of two

random variables.
Y({T,LIT@H 1T +H }) -3

3.2 Joint and marginal probability mass functions

If X and Y are discrete random variables, then the joint probability mass function pyy : RxR —
[0, 1] is defined by

pxy(z,y) =P(X =z,Y =y).

Here, 0 < Pxy(x,y) < 1forall z,y, and EmEVal(X) ZyEVal(Y) Pxy(z,y) = 1.

How does the joint PMF over two variables relate to the probability mass function for each variable
separately? It turns out that

px(z) = ZPXY(%Z/)- PY [y) : % ny (=, 3)

and similarly for py (). In this case, we refer to px («) as the marginal probability mass function
of X. In statistics, the process of forming the marginal distribution with respect to one variable by
summing out the other variable is often known as “marginalization.”
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3.6 Independence

Two random variables X and Y are independent if F'xy (z,y) = Fx(z)Fy (y) for all values of
and y. Equivalently,

e For discrete random variables, pxy(z,y) = px(z)py(y) for all x € Val(X), y €
Val(Y).

e For discrete random variables, py|x(y|r) = py(y) whenever px(z) # 0 for all y €
Val(Y).

Example: 2 coins
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Lemma 3.1. If X and Y are independent then for any subsets A, B C R, we have,

P(X € A)Y € B) = P(X € A)P(Y € B)
e e —

& F e
By using the above lemma one can prove that if X is independent of Y then any function of X is

independent of any function of Y.
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