QUANTUM CHANNELS

1) Pure and mixed quantum states so classical states (basis elements) 10, 11) $\in \mathbb{C}^2$ qubit non-classical states $|+\rangle = \frac{4}{\sqrt{2}} \left(10 \right)$ superpositions of pure states $|-\rangle = \frac{1}{\sqrt{2}} (10) - |1\rangle$ · mixed quantum states ge Ma (C) p>0 Trp=1 positive semidefnite eigenvalues >0 -> pure states p=/qXp/ -> maximally mixed state p= ta -> qubits : Bloch ball $p = \frac{1}{2} (I + xX + yY + zZ)$ $\vec{r} = (x, y, z) \qquad ||\vec{r}|| \leq 1$ Ly pure states - Bloch sphere II - 11=1

Purification Any mixed quantum state can be purified
into a bipartile pure state

$$g \sim g$$

A $A + B$
mixed $pure$
single system bipartite system.
(2) The partial trace operation
Assume that Alice has a g . state f_A , and Bob
has g_B . Then, the g state held jointly
by Alice an Bob is
 $f_{AB} = f_A \otimes f_B$
Definition If Alice and Bob have a g . syst
 f_{AB} , then Alice holds the quantum syst.
 $f_A = Tr_B f_{AB}$
where the partial trace operation Tr_B
is defined by $A = Tr_B f_{AB}$
 $Tr_B (X \otimes Y) = [id \otimes Tr](X \otimes Y) = X \cdot Tr(Y)$

$$\frac{\operatorname{Examples}}{\operatorname{Examples}} \cdot \operatorname{Tr}_{B} \left(\sum_{i} X_{i} \otimes Y_{i} \right) = \sum_{i} X_{i} \cdot \operatorname{Tr}(Y_{i})$$

$$\overset{\text{``linearity''}}{\operatorname{Tr}_{B}} = \sum_{i} \left(\sum_{j=1}^{A} \otimes P_{B} \right) = P_{A} \cdot \operatorname{Tr}(P_{B}) = P_{A}$$

$$\overset{\text{``the partial trace operation is the inverse}}{\operatorname{of the tensor product operation''}}$$

$$P_{AB} = \bigcup = I \operatorname{R} \times \operatorname{RI} \quad \text{maximally entangled stoke}$$

$$I \operatorname{R} = \int_{A} \sum_{i=1}^{A} \operatorname{Iii} \right)$$

$$\omega = I \operatorname{R} \times \operatorname{RI} = \left[\int_{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \int_{A} \left[\sum_{i=1}^{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \int_{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \int_{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \int_{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \int_{A} \sum_{i=1}^{A} \operatorname{Iii} \sum_{i=1}^{A} \sum_{i=$$

· partial trace as the adjoint of
$$\Im IB''$$

Tens: $M_{d_A} \xrightarrow{\otimes I_B} M_{d_A} \otimes M_{d_B}$
 $X \longrightarrow X \otimes IB$
 U what is $Tens_B^*$?
 $\forall X_1Z: \langle Tens_B X, Z \rangle = \langle X, Tens_B^*Z \rangle$
 $(X \otimes IB, P \otimes Q \rangle = \langle X, Tens_B^*(P \otimes Q) \rangle$
 $\langle X \otimes IB, P \otimes Q \rangle = \langle X, P \rangle \cdot T_r Q$
 $(X, P)'' \langle I_B, Q \rangle = \langle X, P \rangle \cdot T_r Q$

$$\forall X \ (X, Tens^*(P \otimes Q)) = \langle X, P \rangle \cdot Tr Q = \langle X, P \cdot Tr Q \rangle$$

$$Tens^*(P \otimes Q) = P \cdot Tr Q = Tr_B(P \otimes Q)$$

3 Purification

Fact For any mixed quantum state f_A , there exist a pure state $(\varphi)_{AB}$ such that $F_A = Tr_B | \varphi X \varphi|_{AB}$ The pure state $(\varphi)_{AB}$ is called a purification of f_A Example $(D_AB)_{AB}$ is a purification of $F_A = T/d$

Proof let PA be an arbitrary mixed state. JA is PSD, hence self-adjoint, hence norma ~ use spectral decomposition $f_{A} = \sum \lambda_{i} |a_{i} \times a_{i}|$ eigenvalues eigenvectors $\rightarrow p_A$ is a q.state : $\lambda_i \ge 0$, $\Sigma \lambda_i = 1$ Idea: use the spectral decomposition of PA to construct the Schmidt decomp. of 147 19AB> = I Vii (ai> @16i) where { | b1 >, ..., | bd > 2 is an arbitrary orthonormal basis of Cd. Is above, we have the Schmidt decomp of 19 ー シッション ショー -> {ais o.n.b. of Cd -> dbiy Let us check that $(\varphi)_{AB}$ is a purification of \mathcal{F}_{AB} $Tr_{B} | \varphi \times \varphi | = \sum_{ij} \sqrt{\lambda_{i}\lambda_{j}} Tr_{B} (|a_{i} \times a_{j}| \otimes |b_{i} \times b_{j}|)$ $= \sum_{j} \sqrt{\lambda_{i} \lambda_{j}} \left[a_{i} \chi_{a_{j}} \right] \cdot \underbrace{\operatorname{Tr} \left(1 b_{i} \chi_{b_{j}} \right)}_{= 1} = \int_{A} \cdot \frac{1}{i + i - j} = \int_{A} \cdot \frac{1}{i + j}$

(1) Quantum channels. Definition and motivation

Recall Time evolution for closed (isolated, single) q. syst -> Unitary operators g'= Up U* 14'> = U·14>

What if we want to describe the time evolution of Alice's q. syst, which is in contact with another q. syst (Bob's) ?

Définition A quantum channel is a linear map €: Md → MD sahisfying · I is completely positive: CP to \$ \$ \$ id : M. & M_ M_ MOM_ is positive if $X \ge 0$ then $\left[\overline{\Phi} \otimes id_{m} \right] (X) \ge 0$ · I is trace-preserving TP $\forall X \quad Tr[\Phi(X)] = Tr[X]$ we say that a q. channel is a TPCP linear map Remark A CP map is, in particular, positive : ×30 =, \$(x)30 . 20 € (density matrices) ⊆ i density matrices?

$$\begin{split} \mathcal{L}_{CP} : & \mathbf{X} \in \mathcal{H}_{d} \otimes \mathcal{H}_{m} \quad \mathbf{X} \geqslant \mathbf{0} \\ & \left(\phi_{U} \otimes i d_{m} \right) (\mathbf{X}) = \left(\phi_{U} \otimes \overline{\mathcal{J}}_{I_{m}} \right) (\mathbf{X}) \\ & = \overline{\Phi}_{U \otimes I_{m}} (\mathbf{X}) \\ & = \left(\mathbf{U} \otimes \mathbf{I} \right) (\mathbf{X}) (\mathbf{U} \otimes \mathbf{I})^{*} \geqslant \mathbf{0} \end{split}$$

· depolarizing channel

 $\Delta : M_{d} \longrightarrow M_{0}$ $X \longmapsto (Tr X) \cdot \frac{T_{0}}{D}$ $L TP : Tr (DCX) = (Tr X) \cdot \frac{Tr T}{D} = Tr X$ = 4

Lo CP: OSX E
$$M_{d}^{(A)} \otimes M_{m}^{(B)}$$

 $(\Delta \otimes id_{m})(X) = \frac{T_{0}}{D} \otimes T_{r}(X) \ge 0$
 \xrightarrow{A}
 ≥ 0 Since X20
Partial trace operation in coordinates
 $A \otimes B = \begin{bmatrix} a_{11}B \cdots a_{nm}B \\ a_{mn}B \cdots a_{nm}B \end{bmatrix}$
 $Z = \begin{bmatrix} 2_{11} \cdots 2_{1m} \\ i \\ a_{m1} \cdots a_{mm} \end{bmatrix} \in M_{m} \otimes M_{m}$
 $Z = \begin{bmatrix} 2_{11} \cdots 2_{1m} \\ i \\ a_{m1} \cdots a_{mm} \end{bmatrix} \in M_{m} \otimes M_{m}$
 $T_{V}(Z) = Z_{11} + Z_{22} + \cdots + Z_{mm} \in M_{m}$
"sum over diagonal blocks"
 $T_{V}(Z) = \begin{bmatrix} T_{r} 2_{11} \cdots T_{r} 2_{1m} \\ i \\ T_{r} 2_{m1} \cdots T_{r} 2_{mm} \end{bmatrix} = M_{m}$

· dephasing channel d=2 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{a & 0} \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ \$: Ma - Ma X + diag(X)

A non-example : the TRANSPOSITION map

O: Ma - Ma $\chi \longrightarrow \chi^{\tau}$ is linear, TP: $Tr(X^T) = Tr(X)$ · \$ is positive: XZO => XTZO x has the same spectrum as X In particular, & maps q. states to q. states · however, D is NOT completely positive L's consider d=2, n=2 $T := (\Theta_2 \otimes id_2)(\omega)$ maximally entangled state of 2 publits $d=2\left[\Omega_{d=2}^{-1}-\frac{1}{\sqrt{2}}\left(100\right)+111\right]-\frac{1}{\sqrt{2}}\left[0\right]_{10}^{01}$ $\omega = \frac{1}{2} \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 0 \\ \hline 1 & 0 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 \\ \hline 1 & 0 \\ \hline 0 & 0 \\ \hline 1 & 0 \\$ $\sigma = \left[\begin{array}{c} \Theta & \text{id} \end{array} \right] \left[\begin{array}{c} A & B \\ C & D \end{array} \right] = \left[\begin{array}{c} A & C \\ B & D \end{array} \right] = \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$ $\mathcal{C} = \begin{bmatrix} 1 \end{bmatrix} \bigoplus \begin{bmatrix} 1 \end{bmatrix} \bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}_{n \times \infty}$

In particular,
$$r$$
 has eigen values
 $113 \cup 113 \cup [-1, 13 \Rightarrow r \neq 0$
 $\Rightarrow \theta_{2}$ is not completely positive !
(in particular, θ is NOT a q. channel
Examples for qubits
• unitary conjugations rb rotations ("u")
of the Bloch ball
• depolarizing channel
 $p_{2}^{-1}(I + x \times + y Y + zZ) + D = \frac{T}{2}$
Bloch ball center
 $\vec{r} = (x, y, z)$
• dephasing channel
 $g = \frac{1}{2}(I + x \times + yY + zZ) + D = diag(p)$
 $= \frac{1}{2}(I + x \times + yY + zZ) + D = diag(p)$
 $= \frac{1}{2}(I + x \times + yY + zZ) + D = diag(p)$
 $= \frac{1}{2}(I + x \times + yY + zZ) + D = diag(p)$
 $= \frac{1}{2}\begin{bmatrix} 1+2 & x+iy \\ x-iy & 1-2 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1+2 & 0 \\ 0 & 1-2 \end{bmatrix}$
 $\vec{r} = (x, y, z) + D = \vec{r} = (0, 0, z)$
 $\vec{r} = (x, y, z) + D = \vec{r} = (0, 0, z)$

• transposition map

$$P=\frac{1}{2}\begin{bmatrix} 1+2 & 2+iy \\ x-iy & 1-2 \end{bmatrix} \longrightarrow \frac{1}{2}\begin{bmatrix} 1+2 & x-iy \\ x-iy & 1-2 \end{bmatrix}$$

 $\overline{r}=(x_iy_iz) \longrightarrow \overline{r'}=(x_i-y_iz)$
 $\sim it is a reflexion w.r.t. x-z place$

→ The Choi matrix of a linear map
$$\phi: \Pi_{d} \rightarrow M_{0}$$

is defined as follows:
 $M_{0} \otimes M_{1} \ni J(\Phi) = [\overline{\Phi} \otimes id_{d}] (d \cdot \omega_{d})$
 $= [\overline{\Phi} \otimes id_{d}] (\underline{f} | ix_{j} | \otimes 1i X_{j} |)$
 $= \underbrace{f}_{2} \overline{\Phi} (ii x_{j} |) \otimes 1i X_{j} |$
 $\in M_{D} \quad \in M_{d}$
Examples of Chai matrices
 $\cdot \overline{\Phi}: M_{2} \rightarrow M_{2}$ identity channel

Moreover, $R = \operatorname{rank} \mathcal{J}(\Phi)$ Examples • identity channel id: $M_d \longrightarrow M_d$ $\times \longmapsto \times$ $\rightarrow \mathcal{J}(id) = d \cdot \mathcal{W}$ maximally entangled state $\rightarrow id(X) = X = I \cdot X \cdot I^{\dagger}$ trans decomp. R = 1 and $A_1 = I$

 $\rightarrow id(X) = X = (id_{d} \otimes id_{1}) (I \cdot X \cdot I^{*})$ $V : \mathbb{C}^{d} \longrightarrow \mathbb{C}^{d} \otimes \mathbb{C}^{1} \simeq \mathbb{C}^{d}$ $X \longmapsto X$ Stinespring decomp

· depolarizing channel $\Delta: M_d \rightarrow M_d$ $X \rightarrow (Tr X) \cdot \frac{T}{d}$

> $-3 J(D) = \frac{1}{d} I_{d2}$ Choi matrix $I_d \otimes I_d$

 $\rightarrow \Delta(X) = \frac{1}{2} \sum_{ij} \left[i X_{j} \right] \cdot X \cdot \left(i X_{j} \right)^{*}$ ~o R=d² Kraus operators A;j = 1 li Xj)

$$f = \prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{j=1}^{n} \prod_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

- (A+B) undergoes a unitary evolution $SAB = U PAB U^* = U (PAB 10)$ - Alicés new state is Pa' = Tr B JAB - From Alice's perspectie : $\mathcal{F}_{A} \mapsto \left[id_{A} \otimes \mathcal{T}_{\mathcal{F}_{B}} \right] \left(\bigcup \left(\mathcal{F}_{A} \otimes I \circ X \circ I_{\mathcal{B}} \right) \bigcup^{*} \right)$ F(PA): () this is the Shinespring dilation of ∮ with the isometry
V: C1 → C^d ⊗ C^R E Bob's dim Alice's dimension $x \mapsto O(x \otimes 10 \times_{B})$