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Incompatibility in QM



Quantum measurements. Compatibility

Quantum states  density matrices: ρ ∈Md (C), ρ ≥ 0, Tr ρ = 1
Quantum measurements  give the probabilities of the classical
outcomes when a quantum state enters a measurement apparatus.
Mathematically, measurements are modeled by POVMs

A1, . . . ,Ak ∈ Md (C)sa, Ai ≥ 0,
k∑

i=1
Ai = Id

Definition
Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl ), are called
compatible if there exists a third POVM C = (Cij)i∈[k],j∈[l] such that

∀i ∈ [k], Ai =
l∑

j=1
Cij and ∀j ∈ [l ], Bj =

k∑
i=1

Cij

The definition generalizes to g-tuples of POVMs A(1), . . . ,A(g), having
respectively k1, . . . kg outcomes, where the joint POVM C has outcome
set [k1]× · · · × [kg ].



What does it mean?
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Compatible measurements can be simulated by a single joint
measurement, by classically post-processing its outputs
Examples:

1 Trivial POVMs A = (pi Id ) and B = (qj Id ) are compatible
2 Commuting POVMs [Ai , Bj ] = 0 are compatible
3 If the POVM A is projective, then A and B are compatible iff they

commute
Compatibility appears also in the setting of quantum channels [HMZ16]



Noisy POVMs

POVMs can be made compatible by adding noise, i.e. mixing in trivial
POVMs
Example: dichotomic POVMs and white noise, s ∈ [0, 1]

(E , I−E ) 7→ s(E , I−E ) + (1− s)( I
2 ,

I
2 ) or E 7→ sE + (1− s) I

2
Taking s = 1/2 suffices to render any pair of dichotomic POVMs
compatible [DFK19]

 define Cij := (Ei + Fj)/4
From now on, we focus on dichotomic (YES/NO) POVMs

Definition
The compatibility region for g measurements on Cd is the set

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈Md (C),
the noisy versions si Ei + (1− si )Id/2 are compatible}



Compatibility region

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈Md (C),
the noisy versions si Ei + (1− si )Id/2 are compatible}

The set Γ(g , d) is convex
For all i ∈ [g ], ei ∈ Γ(g , d): every measurement is
compatible with g − 1 trivial measurements
For d ≥ 2, (1, 1, . . . , 1) /∈ Γ(g , d): there exist
incompatible measurements
For all d ≥ 2, Γ(2, d) is a quarter-circle [BH08, BHSS13]

Generally speaking, the set Γ(g , d) tells us how robust (to noise) is the
incompatibility of g dichotomic measurements on Cd

GOAL: compute the set Γ(g , d) for all g , d



Free spectrahedra



Free spectrahedra

A polyhedron is defined as the intersection of
half-spaces

{x ∈ Rg : 〈hi , x〉 ≤ 1, ∀i ∈ [k]}

A spectrahedron is given by PSD constraints:
for A = (A1, . . . ,Ag ) ∈ (Msa

d )g

DA(1) := {x ∈ Rg :
g∑

i=1
xi Ai ≤ Id}

D(σX ,σY ,σZ )(1) = {(x , y , z) ∈ R3 : xσX + yσY + zσZ ≤ I2} = Bloch ball
A free spectrahedron is the matricization of a spectrahedron [Vin14]

DA :=
∞⊔

n=1
DA(n) with DA(n) := {X ∈ (Msa

n )g :
g∑

i=1
Xi ⊗Ai ≤ Ind}



Examples: the cube and the diamond

The matrix cube is the free spectrahedron defined by

D�,g :=
∞⊔

n=1
{X ∈ (Msa

n )g : ‖Xi‖ ≤ 1, ∀i ∈ [g ]}

At level one, D�,g (1) is the unit ball of the `∞ norm on Rg

As a free spectrahedron, it is defined by 2g × 2g diagonal matrices
D�,g = DK1,...,Kg , with Ki = diag(ei )⊕ diag(−ei )

The matrix diamond is the free spectrahedron defined by

D♦,g :=
∞⊔

n=1
{X ∈ (Msa

n )g :
g∑

i=1
εi Xi ≤ In, ∀ε ∈ {±1}g}

At level one, D♦,g (1) is the unit ball of the `1 norm on Rg

As a free spectrahedron, it is defined by 2g × 2g diagonal matrices
D♦,g = DL1,...,Lg , with Li = I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2



Spectrahedral inclusion

Consider two free spectrahedra defined by g-tuples of matrices
(A1, . . . ,Ag ) and (B1, . . . ,Bg )
We say that DA is contained in DB and we write DA ⊆ DB if, for all
n ≥ 1, DA(n) ⊆ DB(n)
Clearly, DA ⊆ DB =⇒ DA(1) ⊆ DB(1). For the converse implication
to hold, one may need to shrink DA...

Definition
For a free spectrahedron DA, we define its set of inclusion constants as

∆A(g , d) := {s ∈ [0, 1]g : for all g-tuples B1, . . . ,Bg ∈Md (C)sa,

DA(1) ⊆ DB(1) =⇒ s.DA ⊆ DB}

The inclusion constants for the matrix cube play an important role in
combinatorial optimization [HKMS19]

We shall be concerned with the inclusion set for the matrix diamond,
which we denote by ∆(g , d); it is the same as the one of the matrix
cube [BN21]



Main results



Compatibility in QM ⇐⇒ matrix diamond inclusion

To a g-tuple of selfadjoint matrices E ∈ (Msa
d )g , we associate the free

spectrahedron defined by the matrices 2Ei − Id :

D2E−I :=
∞⊔

n=1
{X ∈ (Msa

n )g :
g∑

i=1
Xi ⊗ (2Ei − Id ) ≤ Ind}

Theorem ([BN18])
Let E ∈ (Msa

d )g be g-tuple of selfadjoint matrices. Then:
The matrices E are quantum effects ⇐⇒ D♦,g (1) ⊆ D2E−I(1)
The matrices E are compatible quantum effects ⇐⇒ D♦,g ⊆ D2E−I

At the intermediate levels 1 ≤ n ≤ d, D♦,g (n) ⊆ D2E−I(n) iff for all
isometries V : Cn → Cd , the compressed effects V ∗Ei V are compatible.

Moreover, the compatibility region is equal to the set of inclusion
constants of the matrix diamond: ∀g , d, Γ(g , d) = ∆(g , d).

The same results hold in the general (non-dichotomic) setting. One has
to replace the matrix diamond by the matrix jewel Du,k [BN20]



Consequences

Many things are known about the matrix diamond

For all g , d , 1
2d (1, 1, . . . , 1) ∈ ∆(g , d) [HKMS19]

For all g , d , QCg := {s ∈ [0, 1]g :
∑

i s2
i ≤ 1} ⊆ ∆(g , d) [PSS18]

Many things are known about (in-)compatibility

Many small g , d cases completely solved
Approximate quanutum cloning [Kay16] =⇒ compatibility

Clone(g , d) := {s ∈ [0, 1]g :∃ quantum channel Φ :Md →M⊗g
d s.t.

∀i ∈ [g ], Φi (X ) = si X + (1− si )
Tr X

d }

Theorem ([BN18])

For all g and d ≥ 2d(g−1)/2e, Γ(g , d) = ∆(g , d) = QCg



Proof ideas



Inclusion of spectrahedra and (completely) positive maps

Theorem ([HKM13])
Let A ∈ (Msa

D (C))g , B ∈ (Msa
d (C))g such that DA(1) is bounded.

Then, DA(n) ⊆ DB(n) iff the unital linear map

Φ : span{I,A1, . . . ,Ag} →Msa
d (C)

Ai 7→ Bi

is n-positive.

Sketch of the proof of the main theorem:

Level 1: the extremal points of D♦,g (1) are ±ei

The inclusion D♦,g ⊆ D2E−I holds iff the unital map
Φ : I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2 7→ 2Ei − Id is CP
Arveson’s extension theorem [Pau02, Theorem 6.2]: Φ has a (completely)
positive extension Φ̃ to R2g

Cε := Φ̃(ε) is a joint POVM for the Ei ’s, where {ε} is a basis of R2g



Maximally incompatible quantum effects

Lemma ([New32, Hru16])

For d = 2k , there exist 2k + 1 anti-commuting, self-adjoint, unitary
matrices F1, . . . ,F2k+1 ∈ Ud . Moreover, 2k is the smallest dimension
where such a (2k + 1)-tuple exists.

For k = 0, take F (0)
1 := [1]

For k ≥ 1, define F (k+1)
i = σX ⊗ F (k)

i ∀i ∈ [2k + 1] and
F (k+1)

2k+2 = σY ⊗ I2k , F (k+1)
2k+3 = σZ ⊗ I2k

These matrices satisfy, for all x ∈ Rg
+,
∥∥∑g

i=1 xi Fi
∥∥
∞ = ‖x‖2, and∥∥∑g

i=1 xi F̄i ⊗ Fi
∥∥
∞ = ‖x‖1

For d large enough, the maximally incompatible g-tuple of quantum
effects in Md is given by Ei = (Fi + Id )/2



The take-home slide

Measurement compatibility in QM ⇐⇒ matrix diamond inclusion

A measurement in QM (POVM): Ai ∈Md (C), Ai ≥ 0,
∑

i Ai = Id
Measurements (Ai ), (Bj) are compatible if there exists a joint
measurement (Cij) having marginals A,B: Ai =

∑
j Cij and Bj =

∑
i Cij

Free spectrahedra: DA :=
⊔∞

n=1{X ∈ (Msa
n )g :

∑g
i=1 Xi ⊗ Ai ≤ Ind}

Matrix diamond: D♦,g =
⊔∞

n=1{X ∈Mg
n :
∑g

i=1 εi Xi ≤ In,∀ε ∈ {±1}g}

Theorem
Let E ∈ (Msa

d )g be g-tuple of selfadjoint matrices. Then:

E are quantum effects ⇐⇒ D♦,g (1) ⊆ D2E−I(1)
E are compatible quantum effects ⇐⇒ D♦,g ⊆ D2E−I

For all g , d, compatibility region Γ(g , d) = ∆(g , d) inclusion constants.

Steering inequality violation ⇐⇒ matrix cube inclusion
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