Completely Positive Matrices and Quantum Entanglement

Ion Nechita (CNRS, LPT Toulouse)
— joint work with Satvik Singh [2007.11219, 2010.07898, 2011.03809]

DTP - NIPNE Seminar — September 27th 2021

Talk outline

Diagonal unitary covariant matrices

Completely positive matrices, generalizations, and quantum entanglement

Factor width

The PPT^{2} conjecture

Diagonal unitary covariant matrices

Main definition

- Let \mathcal{U}_{d} be the set of $d \times d$ unitary operators. A bipartite matrix $X \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ is invariant by the conjugate action of any $U \in \mathcal{U}_{d}$, i.e. $\forall U \in \mathcal{D} \mathcal{U}_{d},(U \otimes \bar{U}) X(U \otimes \bar{U})^{*}=X$ iff X belongs to the span of the identity matrix and the maximally entangled state $\omega=\sum_{i, j=1}^{d}|i i\rangle\langle j|$
- Let $\mathcal{D} U_{d}$ be the set of diagonal unitary operators

$$
U=\operatorname{diag}\left(e^{\mathrm{i} \theta_{1}}, \ldots, e^{\mathrm{i} \theta_{d}}\right), \quad \theta_{j} \in \mathbb{R}
$$

and $\mathcal{D} \mathcal{O}_{d}$ be the set of diagonal orthogonal operators

$$
U=\operatorname{diag}(\pm 1, \ldots, \pm 1)
$$

Definition

A bipartite matrix $X \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ is said to be

- conjugate diagonal unitary covariant (CDUC) if $\forall U \in \mathcal{D U}_{d}$

$$
(U \otimes \bar{U}) X(U \otimes \bar{U})^{*}=X
$$

- diagonal orthogonal covariant (DOC) if $\forall U \in \mathcal{D} \mathcal{O}_{d}$

$$
(U \otimes U) X(U \otimes U)^{\top}=X
$$

Explicit form

Proposition ([SN21])

The vector space of CDUC matrices is parametrized by pairs of matrices $(A, B) \in \mathcal{M}_{d}^{2}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B$:

$$
X_{A, B}(i j, k l)=\delta_{i k} \delta_{j l} A_{i j}+\delta_{i j} \delta_{k l} B_{i j}-\delta_{i j k l} A_{i i}
$$

The vector space of DOC matrices is parametrized by triples of matrices $(A, B, C) \in \mathcal{M}_{d}^{3}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B=\operatorname{diag} C$:

$$
X_{A, B, C}(i j, k l)=\delta_{i k} \delta_{j l} A_{i j}+\delta_{i j} \delta_{k l} B_{i j}+\delta_{i l j k} C_{i j}-2 \delta_{i j k l} A_{i j}
$$

- The identity matrix is CDUC: $A=J, B=I$
- The maximally entangled state is CDUC: $A=I, B=J$
- The flip operator $F(x \otimes y)=y \otimes x$ is DOC: $A=B=I, C=J$
- The Choi matrix of the Choi map $\Phi_{\text {Choi }}: \mathcal{M}_{3} \rightarrow \mathcal{M}_{3}$ is CDUC

$$
\Phi_{\text {Choi }}(X)=\left[\begin{array}{ccc}
X_{11}+X_{33} & -X_{12} & -X_{13} \\
-X_{21} & X_{11}+X_{22} & -X_{23} \\
-X_{31} & -X_{32} & X_{22}+X_{33}
\end{array}\right]
$$

Properties of CDUC matrices

- The positivity properties of CDUC matrices depend on the convex cones

$$
\begin{aligned}
\mathrm{EWP}_{d} & =\left\{A \in \mathcal{M}_{d}: A_{i j} \geq 0 \quad \forall i, j\right\} \\
\mathrm{PSD}_{d} & =\left\{B \in \mathcal{M}_{d}: B \text { is positive semidefinite, i.e. } B=Z Z^{*}\right\}
\end{aligned}
$$

- A bipartite matrix $X \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ is said to have positive partial transpose (PPT) if $X \in \mathrm{PSD}_{d^{2}}$, and, moreover

$$
X^{\ulcorner }:=[\text {id } \otimes \operatorname{transp}](X) \in \mathrm{PSD}_{d^{2}}
$$

- Example: the maximally entangled state $\omega=\sum_{i j}|i i\rangle\langle j j|$ is not PPT

Proposition ([SN21])

Let $A, B \in \mathcal{M}_{d}$ with $\operatorname{diag} A=\operatorname{diag} B$. Then

- $X_{A, B}$ is $P S D \Longleftrightarrow A \in \mathrm{EWP}_{d}$ and $B \in \mathrm{PSD}_{d}$
- $X_{A, B}$ is PPT $\Longleftrightarrow A \in \mathrm{EWP}_{d}, B \in \mathrm{PSD}_{d}$ and $A_{i j} A_{j i} \geq\left|B_{i j}\right|^{2} \quad \forall i, j$
- $[\mathrm{id} \otimes \operatorname{Tr}] X_{A, B}=I_{d} \Longleftrightarrow \sum_{j} A_{i j}=1 \quad \forall i$
- $[\operatorname{Tr} \otimes \mathrm{id}] X_{A, B}=I_{d} \Longleftrightarrow \sum_{i} A_{i j}=1 \quad \forall j$

Completely positive matrices, generalizations, and quantum entanglement

Completely positive matrices

Definition ([BSM03])

A matrix $A \in \mathcal{M}_{d}$ is said to be completely positive (CP) if it can be written as

$$
A=Z Z^{\top}, \quad \text { with } Z \in \mathrm{EWP}_{d}
$$

In other words, A is CP if there exist finitely many vectors $v_{n} \in \mathbb{C}^{d}$ s.t.

$$
A=\sum_{n}\left|v_{n} \odot \overline{v_{n}}\right\rangle\left\langle v_{n} \odot \overline{v_{n}}\right|
$$

- The cone of completely positive matrices (and its dual, the cone of completely copositive matrices) has many uses in applied mathematics and optimization
- Clearly, $\mathrm{CP}_{d} \subseteq \mathrm{PSD}_{d} \cap \mathrm{EWP}_{d}$, the inclusion being strict for $d \geq 5$

Separable matrices

Definition ([нннно9])

A bipartite matrix $X \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ is said to be separable (SEP) if it can be written as

$$
X=\sum_{n} Y_{n} \otimes Z_{n} \quad \text { with } Y_{n}, Z_{n} \in \mathrm{PSD}_{d}
$$

In other words, the cone of separable matrices is spanned by tensor products of positive semidefinite matrices.
Non-separable matrices are called entangled

- We have the following chain of inclusions:

$$
\mathrm{SEP}_{d} \subseteq \mathrm{PPT}_{d} \subseteq \mathrm{PSD}_{d^{2}}
$$

- The first inclusion is strict for $d \geq 3$ [Hнн96]
- Deciding membership in SEP_{d} is NP-hard

Separable CDUC matrices and the PCP cone

Definition (Johnston and MacLean [JM19])

A pair $(A, B) \in \mathcal{M}_{d}^{2}$ is said to be pairwise completely positive (PCP) if there exist finitely many vectors $v_{n}, w_{n} \in \mathbb{C}^{d}$ such that

$$
A=\sum_{n}\left|v_{n} \odot \overline{v_{n}}\right\rangle\left\langle w_{n} \odot \overline{w_{n}}\right| \quad B=\sum_{n}\left|v_{n} \odot w_{n}\right\rangle\left\langle v_{n} \odot w_{n}\right|
$$

Proposition ([SN21])

Let $A, B \in \mathcal{M}_{d}$ with $\operatorname{diag} A=\operatorname{diag} B$. Then

$$
X_{A, B} \in \mathrm{SEP}_{d} \Longleftrightarrow(A, B) \in \mathrm{PCP}_{d}
$$

- A pair (A, A) is PCP iff A is completely positive. In particular,

$$
X_{A, A} \in \mathrm{SEP}_{d} \Longleftrightarrow A \in \mathrm{CP}_{d}
$$

- Similar deifinition and result for DOC matrices $\rightsquigarrow \mathrm{TCP}_{d}$ cone
- Deciding membership in $\mathrm{CP}_{d}, \mathrm{PCP}_{d}$, and TCP_{d} is NP-hard

Factor width

Factor width

Definition ([BCPT05])

A matrix $B \in \mathrm{PSD}_{d}$ is said to have factor width k if it admits a rank one decomposition $B=\sum_{n}\left|z_{n}\right\rangle\left\langle z_{n}\right|$, such that, for all $n, \# \operatorname{supp}\left(z_{n}\right) \leq k$

Definition ([SN20])

A matrix pair $(A, B) \in \mathrm{PCP}_{d}$ is said to have factor width k if it admits a $P C P$ decomposition $A=\sum_{n}\left|v_{n} \odot \overline{v_{n}}\right\rangle\left\langle w_{n} \odot \overline{w_{n}}\right|$ and $B=\sum_{n}\left|v_{n} \odot w_{n}\right\rangle\left\langle v_{n} \odot w_{n}\right|$ with $\# \operatorname{supp}\left(v_{n} \odot w_{n}\right) \leq k$ for all n

- The sets above are denoted by PSD_{d}^{k}, resp. PCP_{d}^{k}
- We have the following inclusions

$$
\begin{gathered}
\mathrm{PSD}_{d}^{1} \subseteq \mathrm{PSD}_{d}^{2} \subseteq \cdots \subseteq \mathrm{PSD}_{d}^{d}=\mathrm{PSD}_{d} \\
\mathrm{PCP}_{d}^{1} \subseteq \mathrm{PCP}_{d}^{2} \subseteq \cdots \subseteq \mathrm{PCP}_{d}^{d}=\mathrm{PCP}_{d}
\end{gathered}
$$

- PSD_{d}^{1} is the set of diagonal matrices in EWP_{d}
- PCP_{d}^{1} is the set of matrix pairs $(A, B) \in \mathrm{PCP}_{d}$ such that $B=\operatorname{diag} A$

Factor width two

- To any matrix B, associate its comparison matrix

$$
M(B)_{i j}= \begin{cases}\left|B_{i j}\right| & \text { if } i=j \\ -\left|B_{i j}\right| & \text { otherwise }\end{cases}
$$

Proposition ([BCPT05])

For a (hermitian) matrix $B \in \mathcal{M}_{d}$, the following equivalences hold:
$B \in \mathrm{PSD}_{d}^{2} \Longleftrightarrow M(B) \in \mathrm{PSD}_{d} \Longleftrightarrow B$ is scaled diagonally dominant

Proposition ([SN20])

For $A, B \in \mathcal{M}_{d}$ such that

$$
A \in \mathrm{EWP}_{d} \quad \text { and } \quad B \in \mathrm{PSD}_{d} \quad \text { and } \quad A_{i j} A_{j i} \geq\left|B_{i j}\right|^{2} \quad \forall i, j
$$

the following equivalence holds:

$$
(A, B) \in \mathrm{PCP}_{d}^{2} \Longleftrightarrow B \in \mathrm{PSD}_{d}^{2} \Longleftrightarrow M(B) \in \mathrm{PSD}_{d}
$$

$\rightsquigarrow \mathrm{A}$ simple criterion for membership inside $\mathrm{PCP}_{d}^{2} \subseteq \mathrm{PCP}_{d}(\leftrightarrow \mathrm{SEP})$

The PPT^{2} conjecture

Statement of the conjecture

- Informally, the PPT^{2} conjecture states that any pair of PPT states, when combined in a certain way, yield a separable state
- The precise way of combining the matrices corresponds to the composition of the corresponding quantum (PPT) channels, to yield an entanglement breaking channel
- This conjecture is relevant for quantum information because it imposes constraints on the type of resources that can be distributed using quantum repeaters, a key element of quantum internet [BCHW15, CF17]

Conjecture ([Chr12])

Given a pair of bipartite matrices $\rho_{A B} \in \operatorname{PPT}(A: B)$ and $\sigma_{B C} \in \operatorname{PPT}(B: C)$, it holds that

Progress on the proof

- Trivially holds for qubits since PPT \Longleftrightarrow SEP for $d=2$
- The distance between iterates of a unital (or trace preserving) PPT map and the set of entanglement breaking maps tends to zero in the asymptotic limit [KMP18]
- Any unital (or trace preserving) PPT map becomes entanglement breaking after finitely many iterations of composition with itself [RJP18]
- For other algebraic approaches and extensions, see [LG15, HRF20, GKS20]
- The conjecture holds for fully unitary covariant channels [VW01, CMHW19]
- Independent random quantum channels satisfy the conjecture [CYZ18]
- Gaussian maps satisfy the conjecture [CMHw19]
- The conjecture holds for qutrits [CYT19, CMHW19]

Theorem ([SN20])

$P P T^{2}$ holds for CDUC matrices
\rightsquigarrow full proof claimed recently by A. Majewski arXiv:2108.01588

https://tensors-2022.sciencesconf.org/

The take-home slide

- Bipartite matrices X covariant under the action of the diagonal unitary group: $\forall U \in \mathcal{D} \mathcal{U}_{d},(U \otimes \bar{U}) X(U \otimes \bar{U})^{*}=X$ are called CDUC
- $X_{A, B}(i j, k l)=\delta_{i k} \delta_{j l} A_{i j}+\delta_{i j} \delta_{k l} B_{i j}-\delta_{i j k l} A_{i j}$
- $X_{A, B}$ is PSD $\Longleftrightarrow A \in \mathrm{EWP}_{d}$ and $B \in \mathrm{PSD}_{d}$. It is PPT if, moreover, $A_{i j} A_{j i} \geq\left|B_{i j}\right|^{2} \quad \forall i, j$. It is SEP $\Longleftrightarrow(A, B) \in \mathrm{PCP}_{d}$:

$$
A=\sum_{n}\left|v_{n} \odot \overline{v_{n}}\right\rangle\left\langle w_{n} \odot \overline{w_{n}}\right| \quad B=\sum_{n}\left|v_{n} \odot w_{n}\right\rangle\left\langle v_{n} \odot w_{n}\right|
$$

- The PPT^{2} conjecture: given a pair of bipartite matrices $\rho_{A B} \in \operatorname{PPT}(A: B)$ and $\sigma_{B C} \in \operatorname{PPT}(B: C)$, it holds that

- Main result: PPT^{2} holds for CDUC matrices
- No simple criterion for memb. in $\mathrm{TCP}_{d}:$ PPT 2 open for DOC matreices

References

[BCHW15] Stefan Bäuml, Matthias Christandl, Karol Horodecki, and Andreas Winter.
Limitations on quantum key repeaters.
Nature communications, 6(1):1-5, 2015.
[BCPT05] Erik G Boman, Doron Chen, Ojas Parekh, and Sivan Toledo.
On factor width and symmetric h-matrices.
Linear algebra and its applications, 405:239-248, 2005.
[BSM03] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices.
World Scientific, 2003.
[CF17] Matthias Christandl and Roberto Ferrara.
Private states, quantum data hiding, and the swapping of perfect secrecy.
Physical review letters, 119(22):220506, 2017.
[Chr12] M. Christandl.
PPT square conjecture.
Banff International Research Station Workshop:
Operator Structures in Quantum Information Theory, 2012.
[CMHW19] Matthias Christandl, Alexander Müller-Hermes, and Michael Wolf.
When do composed maps become entanglement breaking?
Annales Henri Poincaré, 20(7):2295-2322, 2019.
[CYT19] Lin Chen, Yu Yang, and Wai-Shing Tang.
Positive-partial-transpose square conjecture for $n=3$.
Physical Review A, 99(1):012337, 2019.
[CYZ18] Benoît Collins, Zhi Yin, and Ping Zhong. The PPT square conjecture holds generically for some classes of independent states.

Journal of Physics A: Mathematical and Theoretical, 51:425301, 2018.
[GKS20] Mark Girard, Seung-Hyeok Kye, and Erling Størmer. Convex cones in mapping spaces between matrix algebras.
Linear Algebra and its Applications, 608:248-269, 2020.
[HHH96] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki.
Separability of mixed states: necessary and sufficient conditions.
Physics Letters A, 223(1):1-8, 1996.
[HHHH09] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki.
Quantum entanglement.
Reviews of Modern Physics, 81(2):865, 2009.
[HRF20] Eric P Hanson, Cambyse Rouzé, and Daniel Stilck França.
Eventually entanglement breaking markovian dynamics: Structure and characteristic times. Ann. Henri Poincaré, 21:1517-1571, 2020.
[JM19] Nathaniel Johnston and Olivia MacLean. Pairwise completely positive matrices and conjugate local diagonal unitary invariant quantum states.
Electronic Journal of Linear Algebra, 35:156-180, 2019.
[KMP18] Matthew Kennedy, Nicholas A Manor, and Vern I Paulsen.
Composition of ppt maps.
Quantum Information \& Computation, 18(5-6):472-480, 2018.
[LG15] Ludovico Lami and Vittorio Giovannetti.

Entanglement-breaking indices.

Journal of Mathematical Physics, 56(9):092201, 2015.
[RJP18] Mizanur Rahaman, Samuel Jaques, and Vern I Paulsen.

Eventually entanglement breaking maps.

Journal of Mathematical Physics, 59(6):062201, 2018.
[SN20] Satvik Singh and Ion Nechita.

The PPT^{2} conjecture holds for all Choi-type maps. preprint arXiv:2011.03809, 2020.
[SN21] Satvik Singh and Ion Nechita.
Diagonal unitary and orthogonal symmetries in quantum theory.
Quantum, 5:519, 2021.
[VW01] Karl Gerd H Vollbrecht and Reinhard F Werner. Entanglement measures under symmetry.
Physical Review A, 64(6):062307, 2001.

