Completely Positive Matrices and Quantum Entanglement

Ion Nechita (CNRS, LPT Toulouse) — joint work with Satvik Singh [2007.11219 , 2010.07898 , 2011.03809]

DTP - NIPNE Seminar — September 27th 2021

Diagonal unitary covariant matrices

Completely positive matrices, generalizations, and quantum entanglement

Factor width

The PPT² conjecture

Diagonal unitary covariant matrices

Main definition

- Let U_d be the set of d × d unitary operators. A bipartite matrix X ∈ M_d ⊗ M_d is invariant by the conjugate action of any U ∈ U_d, i.e. ∀U ∈ DU_d, (U ⊗ Ū)X(U ⊗ Ū)* = X iff X belongs to the span of the identity matrix and the maximally entangled state ω = ∑^d_{i,j=1} |ii⟩⟨jj|
- Let \mathcal{DU}_d be the set of diagonal unitary operators

$$U = {
m diag}(e^{{
m i} heta_1},\ldots,e^{{
m i} heta_d}), \qquad heta_j \in \mathbb{R}$$

and \mathcal{DO}_d be the set of diagonal orthogonal operators

$$U = diag(\pm 1, \ldots, \pm 1)$$

Definition

A bipartite matrix $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ is said to be

• conjugate diagonal unitary covariant (CDUC) if $\forall U \in DU_d$

 $(U\otimes \overline{U})X(U\otimes \overline{U})^*=X$

• diagonal orthogonal covariant (DOC) if $\forall U \in \mathcal{DO}_d$

 $(U \otimes U)X(U \otimes U)^{\top} = X$

Explicit form

Proposition ([SN21])

The vector space of CDUC matrices is parametrized by pairs of matrices $(A, B) \in \mathcal{M}_d^2$ having the same diagonal diag A = diag B:

$$X_{A,B}(ij,kl) = \delta_{ik}\delta_{jl}A_{ij} + \delta_{ij}\delta_{kl}B_{ij} - \delta_{ijkl}A_{ii}$$

The vector space of DOC matrices is parametrized by triples of matrices $(A, B, C) \in \mathcal{M}_d^3$ having the same diagonal diag A = diag B = diag C:

$$X_{A,B,C}(ij,kl) = \delta_{ik}\delta_{jl}A_{ij} + \delta_{ij}\delta_{kl}B_{ij} + \delta_{il}jkC_{ij} - 2\delta_{ijkl}A_{ii}$$

- The identity matrix is CDUC: A = J, B = I
- The maximally entangled state is CDUC: A = I, B = J
- The flip operator $F(x \otimes y) = y \otimes x$ is DOC: A = B = I, C = J
- $\bullet\,$ The Choi matrix of the Choi map $\Phi_{\rm Choi}: {\cal M}_3 \to {\cal M}_3$ is CDUC

$$\Phi_{\text{Choi}}(X) = \begin{bmatrix} X_{11} + X_{33} & -X_{12} & -X_{13} \\ -X_{21} & X_{11} + X_{22} & -X_{23} \\ -X_{31} & -X_{32} & X_{22} + X_{33} \end{bmatrix}$$

Properties of CDUC matrices

- The positivity properties of CDUC matrices depend on the convex cones
 EWP_d = {A ∈ M_d : A_{ij} ≥ 0 ∀i, j}
 PSD_d = {B ∈ M_d : B is positive semidefinite, i.e. B = ZZ*}
- A bipartite matrix X ∈ M_d ⊗ M_d is said to have positive partial transpose (PPT) if X ∈ PSD_{d²}, and, moreover

 $X^{\Gamma} := [\mathsf{id} \otimes \mathsf{transp}](X) \in \mathsf{PSD}_{d^2}$

• Example: the maximally entangled state $\omega = \sum_{ij} |ii\rangle \langle jj|$ is not PPT

Proposition ([SN21])

Let $A, B \in \mathcal{M}_d$ with diag A = diag B. Then

- $X_{A,B}$ is $PSD \iff A \in EWP_d$ and $B \in PSD_d$
- $X_{A,B}$ is PPT $\iff A \in \text{EWP}_d$, $B \in \text{PSD}_d$ and $A_{ij}A_{ji} \ge |B_{ij}|^2 \quad \forall i, j$
- $[id \otimes Tr]X_{A,B} = I_d \iff \sum_j A_{ij} = 1 \quad \forall i$
- $[\operatorname{Tr} \otimes \operatorname{id}]X_{A,B} = I_d \iff \sum_i A_{ij} = 1 \quad \forall j$

Completely positive matrices, generalizations, and quantum entanglement

Definition ([BSM03])

A matrix $A \in \mathcal{M}_d$ is said to be completely positive (CP) if it can be written as

$$A = ZZ^{ op}, \quad \text{with } Z \in \mathsf{EWP}_d$$

In other words, A is CP if there exist finitely many vectors $v_n \in \mathbb{C}^d$ s.t.

$$A = \sum_{n} |v_n \odot \overline{v_n}\rangle \langle v_n \odot \overline{v_n}|$$

- The cone of completely positive matrices (and its dual, the cone of completely copositive matrices) has many uses in applied mathematics and optimization
- Clearly, $CP_d \subseteq \mathsf{PSD}_d \cap \mathsf{EWP}_d$, the inclusion being strict for $d \ge 5$

Definition ([HHHH09])

A bipartite matrix $X \in M_d \otimes M_d$ is said to be separable (SEP) if it can be written as

$$X = \sum_{n} Y_n \otimes Z_n \quad \text{with } Y_n, Z_n \in \mathsf{PSD}_d$$

In other words, the cone of separable matrices is spanned by tensor products of positive semidefinite matrices.

Non-separable matrices are called entangled

• We have the following chain of inclusions:

 $\operatorname{SEP}_d \subseteq \operatorname{PPT}_d \subseteq \operatorname{PSD}_{d^2}$

- The first inclusion is strict for $d \ge 3$ [HHH96]
- Deciding membership in SEP_d is NP-hard

Separable CDUC matrices and the PCP cone

Definition (Johnston and MacLean [JM19])

A pair $(A, B) \in \mathcal{M}_d^2$ is said to be pairwise completely positive (PCP) if there exist finitely many vectors $v_n, w_n \in \mathbb{C}^d$ such that

$$A = \sum_{n} |v_n \odot \overline{v_n}\rangle \langle w_n \odot \overline{w_n}| \qquad B = \sum_{n} |v_n \odot w_n\rangle \langle v_n \odot w_n|$$

Proposition ([SN21])

Let
$$A, B \in \mathcal{M}_d$$
 with diag $A = \text{diag } B$. Then

$$X_{A,B} \in \operatorname{SEP}_d \iff (A,B) \in \operatorname{PCP}_d$$

• A pair (A, A) is PCP iff A is completely positive. In particular,

$$X_{A,A} \in \operatorname{SEP}_d \iff A \in \operatorname{CP}_d$$

- Similar deifinition and result for DOC matrices $\rightsquigarrow TCP_d$ cone
- Deciding membership in CP_d , PCP_d , and TCP_d is NP-hard

Factor width

Factor width

Definition ([BCPT05])

A matrix $B \in PSD_d$ is said to have factor width k if it admits a rank one decomposition $B = \sum_n |z_n\rangle\langle z_n|$, such that, for all $n, \# \operatorname{supp}(z_n) \leq k$

Definition ([SN20])

A matrix pair $(A, B) \in PCP_d$ is said to have factor width k if it admits a *PCP* decomposition $A = \sum_n |v_n \odot \overline{v_n}\rangle \langle w_n \odot \overline{w_n}|$ and $B = \sum_n |v_n \odot w_n\rangle \langle v_n \odot w_n|$ with $\# \operatorname{supp}(v_n \odot w_n) \leq k$ for all n

- The sets above are denoted by PSD_d^k , resp. PCP_d^k
- We have the following inclusions

$$PSD_d^1 \subseteq PSD_d^2 \subseteq \cdots \subseteq PSD_d^d = PSD_d$$
$$PCP_d^1 \subseteq PCP_d^2 \subseteq \cdots \subseteq PCP_d^d = PCP_d$$

- PSD_d^1 is the set of diagonal matrices in EWP_d
- PCP_d^1 is the set of matrix pairs $(A, B) \in \operatorname{PCP}_d$ such that $B = \operatorname{diag} A$

Factor width two

• To any matrix *B*, associate its comparison matrix

$$M(B)_{ij} = \begin{cases} |B_{ij}| & \text{if } i = j \\ -|B_{ij}| & \text{otherwise} \end{cases}$$

Proposition ([BCPT05])

For a (hermitian) matrix $B \in \mathcal{M}_d$, the following equivalences hold:

 $B \in \mathrm{PSD}_d^2 \iff M(B) \in \mathrm{PSD}_d \iff B$ is scaled diagonally dominant

Proposition ([SN20])

For $A, B \in \mathcal{M}_d$ such that

 $A \in \text{EWP}_d$ and $B \in \text{PSD}_d$ and $A_{ij}A_{ji} \ge |B_{ij}|^2 \quad \forall i, j$

the following equivalence holds:

 $(A, B) \in \operatorname{PCP}^2_d \iff B \in \operatorname{PSD}^2_d \iff M(B) \in \operatorname{PSD}_d$

 \rightsquigarrow A simple criterion for membership inside $PCP_d^2 \subseteq PCP_d(\leftrightarrow SEP)$

The PPT² conjecture

Statement of the conjecture

- Informally, the PPT² conjecture states that any pair of PPT states, when combined in a certain way, yield a separable state
- The precise way of combining the matrices corresponds to the composition of the corresponding quantum (PPT) channels, to yield an entanglement breaking channel
- This conjecture is relevant for quantum information because it imposes constraints on the type of resources that can be distributed using quantum repeaters, a key element of quantum internet [BCHW15, CF17]

Conjecture ([Chr12])

Given a pair of bipartite matrices $\rho_{AB} \in PPT(A : B)$ and $\sigma_{BC} \in PPT(B : C)$, it holds that

Progress on the proof

- Trivially holds for qubits since $PPT \iff SEP$ for d = 2
- The distance between iterates of a unital (or trace preserving) PPT map and the set of entanglement breaking maps tends to zero in the asymptotic limit [KMP18]
- Any unital (or trace preserving) PPT map becomes entanglement breaking after finitely many iterations of composition with itself [RJP18]
- For other algebraic approaches and extensions, see [LG15, HRF20, GKS20]
- The conjecture holds for fully unitary covariant channels [VW01, CMHW19]
- Independent random quantum channels satisfy the conjecture [CYZ18]
- Gaussian maps satisfy the conjecture [СМНW19]
- The conjecture holds for qutrits [CYT19, CMHW19]

Theorem ([SN20])

PPT² holds for CDUC matrices

→ full proof claimed recently by A. Majewski arXiv:2108.01588

https://tensors-2022.sciencesconf.org/

The take-home slide

- Bipartite matrices X covariant under the action of the diagonal unitary group: $\forall U \in \mathcal{DU}_d$, $(U \otimes \overline{U})X(U \otimes \overline{U})^* = X$ are called CDUC
- $X_{A,B}(ij, kl) = \delta_{ik}\delta_{jl}A_{ij} + \delta_{ij}\delta_{kl}B_{ij} \delta_{ijkl}A_{ii}$
- $X_{A,B}$ is PSD $\iff A \in \text{EWP}_d$ and $B \in \text{PSD}_d$. It is PPT if, moreover, $A_{ij}A_{ji} \ge |B_{ij}|^2 \quad \forall i, j. \text{ It is SEP } \iff (A, B) \in \frac{\text{PCP}_d}{\text{PCP}_d}$: $A = \sum_n |v_n \odot \overline{v_n}\rangle \langle w_n \odot \overline{w_n}| \qquad B = \sum_n |v_n \odot w_n\rangle \langle v_n \odot w_n|$
- The PPT² conjecture: given a pair of bipartite matrices $\rho_{AB} \in PPT(A:B)$ and $\sigma_{BC} \in PPT(B:C)$, it holds that

- Main result: PPT² holds for CDUC matrices
- No simple criterion for memb. in TCP_d : PPT² open for DOC matreices

References

[BCHW15]	Stefan Bäuml, Matthias Christandl, Karol Horodecki, and Andreas Winter. Limitations on quantum key repeaters. Nature communications, 6(1):1–5, 2015.	[GKS
[BCPT05]	Erik G Boman, Doron Chen, Ojas Parekh, and Sivan Toledo. On factor width and symmetric h-matrices. <i>Linear algebra and its applications</i> , 405:239–248, 2005.	[ННІ
[BSM03]	Abraham Berman and Naomi Shaked-Monderer. <i>Completely positive matrices.</i> World Scientific, 2003.	
[CF17]	Matthias Christandl and Roberto Ferrara. Private states, quantum data hiding, and the swapping of perfect secrecy. Physical review letters, 119(22):220506, 2017.	[ННІ
[Chr12]	M. Christandl. PPT square conjecture. Banfi International Research Station Workshop: Operator Structures in Quantum Information Theory, 2012.	[HRI
[CMHW19]	Matthias Christandl, Alexander Müller-Hermes, and Michael Wolf. When do composed maps become entanglement breaking? Annales Henri Poincaré, 20(7):2295–2322, 2019.	[JM1
[CYT19]	Lin Chen, Yu Yang, and Wai-Shing Tang. Positive-partial-transpose square conjecture for n = 3. <i>Physical Review A</i> , 99(1):012337, 2019.	[KM
[CYZ18]	Benoît Collins, Zhi Yin, and Ping Zhong. The PPT square conjecture holds generically for some classes of independent states.	[LG1

Journal of Physics A: Mathematical and Theoretical, 51:425301, 2018.

S201 Mark Girard, Seung-Hyeok Kye, and Erling Størmer. Convex cones in mapping spaces between matrix algebras. Linear Algebra and its Applications, 608:248-269, 2020. H961 Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1):1-8, 1996. HH091 Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Reviews of Modern Physics, 81(2):865, 2009. F201 Eric P Hanson, Cambyse Rouzé, and Daniel Stilck França. Eventually entanglement breaking markovian dynamics: Structure and characteristic times. Ann. Henri Poincaré, 21:1517-1571, 2020. 19] Nathaniel Johnston and Olivia MacLean. Pairwise completely positive matrices and conjugate local diagonal unitary invariant quantum states. Electronic Journal of Linear Algebra, 35:156-180, P18] Matthew Kennedy, Nicholas A Manor, and Vern I Paulsen. Composition of ppt maps. Quantum Information & Computation. 18(5-6):472-480, 2018. [5] Ludovico Lami and Vittorio Giovannetti.

Entanglement-breaking indices.

Journal of Mathematical Physics, 56(9):092201, 2015.

[RJP18] Mizanur Rahaman, Samuel Jaques, and Vern I Paulsen.

Eventually entanglement breaking maps. *Journal of Mathematical Physics*, 59(6):062201, 2018.

[SN20] Satvik Singh and Ion Nechita.

The PPT² conjecture holds for all Choi-type maps. preprint arXiv:2011.03809, 2020.

- [SN21] Satvik Singh and Ion Nechita. Diagonal unitary and orthogonal symmetries in quantum theory. Quantum, 5:519, 2021.
- [VW01] Karl Gerd H Vollbrecht and Reinhard F Werner. Entanglement measures under symmetry. Physical Review A, 64(6):062307, 2001.