Measurement incompatibility vs. Bell non-locality

Ion Nechita (LPT Toulouse), joint work with Faedi Loulidi

NanoX-FeRMI days, March 10th 2022

Outline

Quantum incompatibility

There exist quantum observables which cannot be measured simultaneously

180
W. 耳eseanbers.
arabgliches, els der Gleiahnog (1) eataprieht so wlyre die Quantesweehanik unaठglieh. Diese Ungesasigkeit, die darch Clitiebugg (1) hastgologt ish schaift also erst Roun fax die Geltigkeit der Deaiebnagolis, die in dan quantenmehaniecien Yertauschagreiationea

$$
p q-q p=\frac{\frac{\pi}{2 x i}}{2 q}
$$

ibren prignasten Asedrack finden; eie ermbgbebt dieeo Oloichuag, ohse

\qquad
for certain Bell inequalities

Bell non-locality

The quantum value of certain correlation inequalities is strictly larger than the classical value

ETC. 1. Einstein-Todolaky-Roson-Bohm gedane -1 riment. Two-spin-l partiolos (or photong) in anenexperimont. Two-npin-1 particlon (or photons) in a singlet state (or similar) separate. The spin components (or lincar polarizations) of 1 and 2 are measured along tions between these measurements.

We relate, in a quantitative manner, the incompatibility of N quantum measurements to the largest violation of a given Bell inequality, when one party uses the N measurements.

Measurement compatibility

Quantum measurements

- In quantum mechanics, the measurement postulate describes the outcome probabilities and the posterior state when measuring an observable X on a quantum state described by a dimensional density operator ρ.
- Outcome probabilities are given by the Born rule: $\mathbb{P}[$ outcome $i]=\operatorname{Tr} \rho P_{i}$, where P_{i} are the eigenprojections of the observable X.
- Allowing for more general measurement scenarios (interaction with an ancilla system), one can describe measurement outcomes in the POVM (Positive-Operator-Valued Measure) framework [NC10, Wat18]:

$$
\mathbb{P}[\text { outcome } i]=\operatorname{Tr} \rho A_{i},
$$

where A_{1}, \ldots, A_{k} are positive semi-definite matrices s.t. $\sum_{i=1}^{k} A_{i}=I_{d}$.

A particle enters a measurement apparatus described by a POVM $A=\left(A_{1}, \ldots, A_{k}\right)$. The measurement yields outcome $i=2$, with prob. $\operatorname{Tr} \rho A_{2}$.

Measurement (in-)compatibility

- In quantum mechanics, there exist incompatible quantum measurements, i.e. measurements that cannot be simultaneously performed on a single copy of the system.
- In the general framework of POVMs, two measurements A, B are said to be compatible [HMZ16] if there exists a third measurement $C=\left(C_{i j}\right)$ such that A and B are the marginals of C :

$$
\begin{array}{ll}
\forall i=1, \ldots, k, & A_{i}=\sum_{j=1}^{l} C_{i j} \\
\forall j=1, \ldots, l, & B_{j}=\sum_{i=1}^{k} C_{i j}
\end{array}
$$

- Projective measurements are compatible if and only if they commute:

$$
C_{i j}=A_{i} B_{j}=\sqrt{A_{i}} B_{j} \sqrt{A_{i}}=\sqrt{B_{j}} A_{i} \sqrt{B_{j}}
$$

- In many scenarios in quantum information theory, measurement incompatibility is a necessary ingredient to obtain non-classical effects.

Norm characterization

Dichotomic POVMs (A_{1}, A_{2}) correspond to measurements with two possible outcomes: YES / NO measurements. To such a POVM, we associate a measurement operator $\left(A_{1}, A_{2}\right) \mapsto A:=A_{1}-A_{2}$ with -
 $I_{d} \leq A \leq I_{d}$.

Theorem ([BJN20])

A tuple $A=\left(A_{1}, A_{2}, \ldots, A_{N}\right)=\sum_{i=1}^{N}|i\rangle \otimes A_{i}$ of measurement operators corresponds to compatible POVMs $\Longleftrightarrow\|A\|_{c} \leq 1$, with

$$
\|A\|_{c}:=\inf \left\{\left\|\sum_{j=1}^{K} H_{j}\right\|_{\infty}: A=\sum_{j=1}^{K} z_{j} \otimes H_{j} \text {, s.t. }\left\|z_{j}\right\|_{\infty} \leq 1 \text { and } H_{j} \geq 0\right\}
$$

where $z_{j} \in \mathbb{R}^{N}$ and $H_{j} \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C}) ;\|\cdot\|_{c}$ is called the compatibility norm.

- As an example, consider noisy measurements in the Pauli bases: $A_{X}=x \sigma_{X}$, $A_{Y}=y \sigma_{Y}, A_{Z}=z \sigma_{Z}$. The compatibility norm reads in this case $\left\|\left(A_{X}, A_{Y}, A_{Z}\right)\right\|_{c}=\|(x, y, z)\|_{2}[$ Bus86 $]$.

Bell inequalities

Aspect's experiment shows a violation of the Bell inequality

Non-local games

Game payoff : $\quad S=\sum_{x, y, a, b} V(a, b, x, y) \cdot \mathbb{P}(a, b \mid x, y)$

Bell's inequality as a non-local game

- The type of answers Alice and Bob can give depend on their resources:
- Classical strategies: with shared randomness $\lambda \sim \mu$, the players answer randomly given the local knowledge

$$
\mathbb{P}(a, b \mid x, y)=\int_{\Lambda} \mathbb{P}_{A}(a \mid x, \lambda) \cdot \mathbb{P}_{B}(b \mid y, \lambda) \mathrm{d} \mu(\lambda)
$$

- Quantum strategies: with a shared quantum bipartite state ψ, the players perform local POVMs

$$
\mathbb{P}(a, b \mid x, y)=\langle\psi| A_{x}^{a} \otimes B_{y}^{b}|\psi\rangle
$$

- Correlation games: $V(a, b, x, y)=M_{x y} \cdot a b$ for some matrix $M \in \mathcal{M}_{N}(\mathbb{R})$.
- The CHSH game [CHSH69]: questions $\{x, y\} \in\{1,2\}$, answers $\{a, b\} \in\{-1,1\}$

$$
S=\left\langle a_{1} b_{1}\right\rangle+\left\langle a_{1} b_{2}\right\rangle+\left\langle a_{2} b_{1}\right\rangle-\left\langle a_{2} b_{2}\right\rangle=\sum_{x, y=1}^{2} M_{x, y}\left\langle a_{x}, b_{y}\right\rangle
$$

with $\left\langle a_{x} b_{y}\right\rangle=\sum_{a, b= \pm 1} a b \cdot \mathbb{P}(a, b \mid x, y)$ and $M_{\mathrm{CHSH}}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
Bell's theorem [Bel64, Tsi87]: quantum theory violates the CHSH inequality

$$
\sup \{S: \mathbb{P} \text { quantum }\}=2 \sqrt{2}>2=\sup \{S: \mathbb{P} \text { classical }\}
$$

Norm characterization

Consider an N-input, 2-outcome game $M \in \mathcal{M}_{N}(\mathbb{R})$, and assume that
Alice's measurement operators $A=\left(A_{1}, \ldots, A_{N}\right)$ are fixed.

Definition

For a N-tuple of measurement operators on Alice's side $A=\left(A_{1}, \ldots, A_{N}\right)$, the largest quantum value of the game M defines a tensor norm

$$
\|A\| M:=\sup _{\|\psi\|=1\left\|B_{y}\right\| \leq 1} \sup _{\|}\langle\psi| \sum_{x, y=1}^{N} M_{x y} A_{x} \otimes B_{y}|\psi\rangle=\lambda_{\max }\left[\sum_{y=1}^{N}\left|\sum_{x=1}^{N} M_{x, y} A_{x}\right|\right]
$$

Alice's measurements are called M-Bell-local if for any choice of Bob's observables B and for any shared state ψ, one cannot violate the Bell inequality corresponding to M :

$$
\sup \left\{S_{M}: \mathbb{P} \text { quantum }\right\}=:\|A\|_{M} \leq \omega(M):=\sup \left\{S_{M}: \mathbb{P} \text { classical }\right\}
$$

Otherwise, they are called M-Bell-non-local.

Main results

Relating incompatibility to non-locality

It is known [WPGF09] that two measurements $A_{1}=\left(A_{1}^{+}, A_{1}^{-}\right)$and $A_{2}=\left(A_{2}^{+}, A_{2}^{-}\right)$ violate the CHSH inequality if and only if they are incompatible.

We have introduced quantitative measures of non-locality and incompatibility: a N-tuple of dichotomic measurements $A=\left(A_{1}, \ldots, A_{N}\right)$ is

- compatible $\Longleftrightarrow\|A\|_{c} \leq 1$, with

$$
\|A\|_{c}=\inf \left\{\left\|\sum_{j=1}^{K} H_{j}\right\|_{\infty}: A=\sum_{j=1}^{K} z_{j} \otimes H_{j}, \text { s.t. }\left\|z_{j}\right\|_{\infty} \leq 1 \text { and } H_{j} \geq 0\right\}
$$

- not violating the Bell inequality $M \Longleftrightarrow\|A\|_{M} \leq \omega(M)$, with

$$
\|A\|_{M}=\sup _{\|\psi\|=1\left\|B_{y}\right\| \leq 1} \sup \langle\psi| \sum_{x, y=1}^{N} M_{x y} A_{x} \otimes B_{y}|\psi\rangle=\lambda_{\max }\left[\sum_{y=1}^{N}\left|\sum_{x=1}^{N} M_{x, y} A_{x}\right|\right]
$$

Theorem ([Loulidi-Nechita, soon on the arXive])
For all invertible games M and measurements $A=\left(A_{1}, \ldots, A_{N}\right)$, it holds

$$
\omega(M)^{-1} \cdot\|A\|_{M} \leq\|A\|_{c} \leq\|A\|_{M} \cdot \max \left\{\left|\left(M^{-1}\right)_{x, y}\right|\right\}_{x, y=1}^{N}
$$

Relating incompatibility to Bell non-locality

- For the CHSH game $(N=2)$, the two norms are equal (for any Hilbert space dimension d):

$$
\|A\|_{c}=\|A\|_{M_{C H S H}}
$$

- The above is a quantitative restatement of [WPGFog].
- How about other Bell inequalities in more general scenarios?

Theorem ([Loulidi-Nechita, soon on the arXive])
For all invertible non-local games $M \in \mathcal{M}_{N}(\mathbb{R})$, we have

$$
\omega(M) \cdot \max \left\{\left|\left(M^{-1}\right)_{x, y}\right|\right\}_{x, y=1}^{N} \geq 1
$$

with equality if and only if $N=2$ and M is a permutation of $M_{\text {CHSH }}$.

In other words, the CHSH Bell inequality is essentially the only one which characterizes measurement incompatibility in the scenario where Alice's measurements are fixed.

Take home message

- Measurement compatibility (for dichotomic POVMs) can be characterized by a norm $\|\cdot\|_{c}$

$$
\left(A_{1}, \ldots, A_{N}\right) \text { compatible } \Longleftrightarrow\left\|\left(A_{1}, \ldots, A_{N}\right)\right\|_{c} \leq 1
$$

- For a N-input, 2-output non-local game M, the maximum value that can be obtained when Alice's measurements are fixed is given by the norm

$$
\|A\|_{M}=\sup _{\|\psi\|=1\left\|B_{y}\right\| \leq 1} \sup \langle\psi| \sum_{x, y=1}^{N} M_{x y} A_{x} \otimes B_{y}|\psi\rangle
$$

- Bell inequality violations require incompatibility: $\|A\|_{M} \leq\|A\|_{c} \cdot \omega(M)$
- The reverse inequality holds, up to a constant: $\|A\|_{c} \leq\|A\|_{M} \cdot \max \left|\left(M^{-1}\right)_{x, y}\right|$
- The CHSH Bell inequality (and its permutations) is the only one for which measurement incompatibility \Longleftrightarrow Bell non-locality:

$$
\omega(M) \cdot \max \left|\left(M^{-1}\right)_{x, y}\right|=1 \Longrightarrow M \cong M_{\text {CHSH }}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Open question: measurements with ≥ 3 outcomes?

References

John S Bell.
On the einstein podolsky rosen paradox.
Physics Physique Fizika, 1(3):195, 1964.
[BJN20] Andreas Bluhm, Anna Jenčová, and Ion Nechita. Incompatibility in general probabilistic theories, generalized spectrahedra, and tensor norms.
arXiv preprint arXiv:2011.06497, 2020.
[Bus86] Paul Busch.
Unsharp reality and joint measurements for spin observables.
Phys. Rev. D, 33:2253-2261, 1986.
[CHSH69] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt.
Proposed experiment to test local hidden-variable theories.
Physical review letters, 23(15):880, 1969.
[HMZ16] Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman. An invitation to quantum incompatibility.

Journal of Physics A: Mathematical and Theoretical, 49(12):123001, 2016.
[NC10] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge University Press, 2010.
[Tsi87] Boris S Tsirelson.
Problems of the theory probability distributions ix. zapiski math. inst. steklov (lomi), 142: 174-194, 1985. english
translation in quantum analogues of the bell inequalities. the case of two spatially separated domains.
J. Soviet Math, 36:557-570, 1987.
[Wat18] John Watrous.
The Theory of Quantum Information.
Cambridge University Press, 2018.
[WPGF09] Michael M. Wolf, David Pérez-García, and Carlos Fernández.
Measurements incompatible in quantum theory cannot be measured jointly in any other local theory.
Physical Review Letters, 103:230402, 2009.

