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Outline

We relate, in a quantitative manner, the incompatibility of
N quantum measurements to the largest violation of a given
Bell inequality, when one party uses the N measurements.



Measurement compatibility



Quantum measurements

In quantum mechanics, the measurement postulate describes the outcome
probabilities and the posterior state when measuring an observable X on a
quantum state described by a d dimensional density operator ρ.
Outcome probabilities are given by the Born rule: P[ outcome i ] = Tr ρPi ,
where Pi are the eigenprojections of the observable X .
Allowing for more general measurement scenarios (interaction with an ancilla
system), one can describe measurement outcomes in the POVM
(Positive-Operator-Valued Measure) framework [NC10, Wat18]:

P[ outcome i ] = Tr ρAi ,

where A1, . . . ,Ak are positive semi-definite matrices s.t.
∑k

i=1 Ai = Id .
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A particle enters a measurement apparatus described by a POVM
A = (A1, . . . ,Ak). The measurement yields outcome i = 2, with prob. Tr ρA2.



Measurement (in-)compatibility

In quantum mechanics, there exist incompatible quantum measurements, i.e.
measurements that cannot be simultaneously performed on a single copy of the
system.
In the general framework of POVMs, two measurements A,B are said to be
compatible [HMZ16] if there exists a third measurement C = (Cij) such that A
and B are the marginals of C :

∀i = 1, . . . , k, Ai =
l∑

j=1
Cij

∀j = 1, . . . , l , Bj =
k∑

i=1
Cij

Projective measurements are compatible if and only if they commute:

Cij = AiBj =
√

AiBj
√

Ai =
√

BjAi
√

Bj

In many scenarios in quantum information theory, measurement incompatibility
is a necessary ingredient to obtain non-classical effects.



Norm characterization
Dichotomic POVMs (A1,A2) correspond to measure-
ments with two possible outcomes: YES / NO mea-
surements. To such a POVM, we associate a mea-
surement operator (A1,A2) 7→ A := A1 − A2 with −
Id ≤ A ≤ Id .

A

YES NO

Theorem ([BJN20])

A tuple A = (A1,A2, . . . ,AN) =
∑N

i=1 |i⟩ ⊗ Ai of measurement operators
corresponds to compatible POVMs ⇐⇒ ∥A∥c ≤ 1, with

∥A∥c := inf
{∥∥∥ K∑

j=1
Hj

∥∥∥
∞

: A =
K∑

j=1
zj ⊗ Hj , s.t. ∥zj∥∞ ≤ 1 and Hj ≥ 0

}
where zj ∈ RN and Hj ∈ Msa

d (C); ∥ · ∥c is called the compatibility norm.

As an example, consider noisy measurements in the Pauli bases: AX = xσX ,
AY = yσY , AZ = zσZ . The compatibility norm reads in this case
∥(AX ,AY ,AZ )∥c = ∥(x , y , z)∥2 [Bus86].



Bell inequalities



Aspect’s experiment shows a violation of the Bell inequality



Non-local games

x y

a b

Referee

Alice Bob

shared entanglement

shared randomness

Game payoff : S =
∑

x ,y ,a,b
V (a, b, x , y) · P(a, b|x , y)



Bell’s inequality as a non-local game

The type of answers Alice and Bob can give depend on their resources:
Classical strategies: with shared randomness λ ∼ µ, the players answer
randomly given the local knowledge

P(a, b|x , y) =
∫

Λ
PA(a|x , λ) · PB(b|y , λ) dµ(λ)

Quantum strategies: with a shared quantum bipartite state ψ, the players
perform local POVMs

P(a, b|x , y) =
〈
ψ

∣∣∣Aa
x ⊗ Bb

y

∣∣∣ψ〉
Correlation games: V (a, b, x , y) = Mxy · ab for some matrix M ∈ MN(R).
The CHSH game [CHSH69]: questions {x , y} ∈ {1, 2}, answers {a, b} ∈ {−1, 1}

S = ⟨a1b1⟩ + ⟨a1b2⟩ + ⟨a2b1⟩ − ⟨a2b2⟩ =
2∑

x ,y=1
Mx ,y ⟨ax , by ⟩

with ⟨ax by ⟩ =
∑

a,b=±1 ab · P(a, b|x , y) and MCHSH =
[ 1 1

1 −1
]
.

Bell’s theorem [Bel64, Tsi87]: quantum theory violates the CHSH inequality

sup{S : P quantum} = 2
√

2 > 2 = sup{S : P classical}



Norm characterization

Consider an N-input, 2-outcome game M ∈ MN(R), and assume that

Alice’s measurement operators A = (A1, . . . ,AN) are fixed.

Definition
For a N-tuple of measurement operators on Alice’s side A = (A1, . . . ,AN), the
largest quantum value of the game M defines a tensor norm

∥A∥M := sup
∥ψ∥=1

sup
∥By ∥≤1

〈
ψ

∣∣∣ N∑
x ,y=1

Mxy Ax ⊗ By

∣∣∣ψ〉
= λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Mx ,y Ax

∣∣∣∣]

Alice’s measurements are called M-Bell-local if for any choice of Bob’s
observables B and for any shared state ψ, one cannot violate the Bell inequality
corresponding to M:

sup{SM : P quantum} =: ∥A∥M ≤ ω(M) := sup{SM : P classical}

Otherwise, they are called M-Bell-non-local.



Main results



Relating incompatibility to non-locality

It is known [WPGF09] that two measurements A1 = (A+
1 ,A

−
1 ) and A2 = (A+

2 ,A
−
2 )

violate the CHSH inequality if and only if they are incompatible.

We have introduced quantitative measures of non-locality and incompatibility: a
N-tuple of dichotomic measurements A = (A1, . . . ,AN) is

compatible ⇐⇒ ∥A∥c ≤ 1, with

∥A∥c = inf
{∥∥∥ K∑

j=1
Hj

∥∥∥
∞

: A =
K∑

j=1
zj ⊗ Hj , s.t. ∥zj∥∞ ≤ 1 and Hj ≥ 0

}
not violating the Bell inequality M ⇐⇒ ∥A∥M ≤ ω(M), with

∥A∥M = sup
∥ψ∥=1

sup
∥By ∥≤1

〈
ψ

∣∣∣ N∑
x ,y=1

Mxy Ax ⊗ By

∣∣∣ψ〉
= λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Mx ,y Ax

∣∣∣∣]
Theorem ([Loulidi-Nechita, soon on the arXive])
For all invertible games M and measurements A = (A1, . . . ,AN), it holds

ω(M)−1 · ∥A∥M ≤ ∥A∥c ≤ ∥A∥M · max
{

|(M−1)x ,y |
}N

x ,y=1



Relating incompatibility to Bell non-locality

For the CHSH game (N = 2), the two norms are equal (for any Hilbert space
dimension d):

∥A∥c = ∥A∥MCHSH

The above is a quantitative restatement of [WPGF09].
How about other Bell inequalities in more general scenarios?

Theorem ([Loulidi-Nechita, soon on the arXive])
For all invertible non-local games M ∈ MN(R), we have

ω(M) · max
{

|(M−1)x ,y |
}N

x ,y=1
≥ 1

with equality if and only if N = 2 and M is a permutation of MCHSH.

In other words, the CHSH Bell inequality is essentially the only one which
characterizes measurement incompatibility in the scenario where Alice’s
measurements are fixed.



Take home message

Measurement compatibility (for dichotomic POVMs) can be characterized by a
norm ∥ · ∥c

(A1, . . . ,AN) compatible ⇐⇒ ∥(A1, . . . ,AN)∥c ≤ 1

For a N-input, 2-output non-local game M, the maximum value that can be
obtained when Alice’s measurements are fixed is given by the norm

∥A∥M = sup
∥ψ∥=1

sup
∥By ∥≤1

〈
ψ

∣∣∣ N∑
x ,y=1

Mxy Ax ⊗ By

∣∣∣ψ〉
Bell inequality violations require incompatibility: ∥A∥M ≤ ∥A∥c · ω(M)
The reverse inequality holds, up to a constant: ∥A∥c ≤∥A∥M ·max |(M−1)x ,y |
The CHSH Bell inequality (and its permutations) is the only one for which
measurement incompatibility ⇐⇒ Bell non-locality:

ω(M) · max |(M−1)x ,y | = 1 =⇒ M ∼= MCHSH =
[

1 1
1 −1

]
Open question: measurements with ≥ 3 outcomes?
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