Diagonal Unitary and Orthogonal Symmetries in Quantum Theory

joint work with Satvik Singh (Cambridge UK) arXiv:2010.07898 and arXiv:2112.11123

Ion Nechita (CNRS, LPT Toulouse)

Plan of the talk

1. Unitary symmetry in quantum information - isotropic states
2. Diagonal unitary / orthogonal symmetry
3. Positive semidefinite operators
4. Unitary operators
5. Dual unitary matrices, entangling power, and Hadamard matrices

Unitary symmetry in quantum information

Symmetry in quantum theory

- Quantum states are modeled mathematically by density matrices

$$
\left\{\rho \in \mathscr{M}_{d}(\mathbb{C}): \rho \geq 0 \text { and } \operatorname{Tr} \rho=1\right\}
$$

- Unitary operators encode time evolution

$$
\rho \mapsto U \rho U^{*}, \quad \text { for } U \in \mathscr{U}_{d}
$$

- We would like to consider quantum states which are left invariant by a certain class of unitary operators

Example. If $U X U^{*}=X$ for all $U \in \mathscr{U}_{d}$, then X must be a scalar matrix, i.e. $X=c I_{d}$ for some constant $c \in \mathbb{C}$. For density matrices, $c=1 / d$.

Bipartite operators

- Quantum entanglement is of the key features of quantum theory. It appears when one considers two quantum systems.
- In this case, the set of quantum states is given by bipartite matrices:

$$
\begin{aligned}
& \quad\left\{\rho_{A B} \in \mathscr{M}_{d} \otimes \mathscr{M}_{d} \cong \mathscr{M}_{d^{2}}: \rho \geq 0 \text { and } \operatorname{Tr} \rho=1\right\} \\
& \text { Alice's output }-\rho_{A B} \text { Alice's input } \\
& \text { Bob's output }- \text { Bob's input }
\end{aligned}
$$

Two examples

- Separable states are bipartite quantum states which can be written as convex combinations of product states $\rho_{A} \otimes \rho_{B}$

$$
-\rho_{A B}=\sum_{i} p_{i}-\rho_{A}^{(i)}
$$

- Entangled states are the non-separable states. The most important example is the maximally entangled state

$$
\omega=\frac{1}{d} \sum_{i, j=1}^{d}|i i\rangle\langle j j|
$$

$$
-\rho_{A B}=\frac{1}{d}
$$

(Full) Unitary symmetry in the bipartite case

Theorem. Let $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ be a bipartite operator. Then

$$
\forall U \in \mathscr{U}_{d},(U \otimes U) X(U \otimes U)^{*}=X \Longleftrightarrow X=\alpha I_{d^{2}}+\beta F \text { for } \alpha, \beta \in \mathbb{C}
$$

where the (unitary) flip operator is defined by $F x \otimes y=y \otimes x$.

Isotropic quantum states

Theorem. Let $\rho \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ be a bipartite density matrix. Then

$$
\forall U \in \mathscr{U}_{d},(U \otimes \bar{U}) \rho U^{*} \otimes U^{\top}=\rho \Longleftrightarrow \rho=(1-p) \frac{I}{d^{2}}+p \omega \text { for } p \in\left[-1 /\left(d^{2}-1\right), 1\right]
$$

i.e. ρ must be a convex combination of the maximally mixed state and the maximally entangled state. Such quantum states are called isotropic.

Diagonal unitary/orthogonal symmetry

The diagonal subgroup

- Since requiring the full unitary symmetry yields matrices (resp. quantum states) with only 2 parameters, we shall consider the much smaller subgroups

$$
\begin{aligned}
& \mathscr{D} \mathscr{U}_{d}:=\left\{\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right): \theta \in \mathbb{R}^{d}\right\} \\
& \mathscr{D} \mathcal{O}_{d}:=\left\{\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{d}\right): \epsilon \in\{ \pm 1\}^{d}\right\}
\end{aligned}
$$

- In the case of a single tensor factor, we have

$$
\forall U \in \mathscr{D} U_{d}, \quad U X U^{*}=X \Longleftrightarrow X=\operatorname{diag}(X)
$$

Diagonally symmetric bipartite matrices

Definition. A bipartite matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is called:

- LDUI (local diagonal unitary invariant) if

$$
\forall U \in \mathscr{D} \mathscr{U}_{d}, \quad(U \otimes U) X\left(U^{*} \otimes U^{*}\right)=X
$$

- CLDUI (conjugate LDUI) if

$$
\forall U \in \mathscr{D} \mathscr{U}_{d}, \quad(U \otimes \bar{U}) X\left(U^{*} \otimes U^{\top}\right)=X
$$

- LDOI (local diagonal orthogonal invariant) if $\forall U \in \mathscr{D} \mathcal{O}_{d}, \quad(U \otimes U) X\left(U^{\top} \otimes U^{\top}\right)=X$

Characterization theorem - CDLUI case

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is CLDUI iff there exist matrices $A, B \in \mathscr{M}_{d}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=j, k=l} B_{i k}-\mathbf{1}_{i=j=k=l} \delta_{i}
$$

Characterization theorem - LDUI and LDOI

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is LDUI iff there exist matrices $A, C \in \mathscr{M}_{d}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} C=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=l, j=k} C_{i j}-\mathbf{1}_{i=j=k=l} \delta_{i}
$$

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is LDOI iff there exist matrices $A, B, C \in \mathscr{M}_{d}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B=\operatorname{diag} C=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=j, k=l} B_{i k}+\mathbf{1}_{i=l, j=k} C_{i j}-2 \mathbf{1}_{i=j=k=l} \delta_{i}
$$

Three examples

- The identity matrix is CLDUI with
$A=J_{d}, B=I_{d}$
- The maximally entangled state is

CLDUI with $A=I_{d}, B=J_{d}$

- The flip operator is LDUI with

$$
A=I_{d}, B=J_{d}
$$

Symmetric bipartite PSD operators

Properties of symmetric operators

Theorem. A bipartite LDOI operator $X=X_{A, B, C}$ is

- self-adjoint iff A is real and B, C are self-adjoint
- positive semidefinite iff the following three conditions hold:

1. $A_{i j} \geq 0$ for all i, j
2. B is positive semidefinite
3. $A_{i j} A_{j i} \geq\left|C_{i j}\right|^{2}$ for all i, j

Note that LDUI operators correspond to B diagonal, and CLDUI operators correspond to C diagonal.

Separability for diagoal symmetric matrices

Theorem. A bipartite CLDUI operator of the form $X=X_{A, A}$ is separable iff the matrix A is completely positive, i.e.

$$
\exists R \in \mathscr{M}_{d \times D}\left(\mathbb{R}_{+}\right) \quad \text { s.t. } \quad A=R R^{\top}
$$

In dimensions $d \leq 4$ completely positive matrices are precisely positive semidefinite matrices with non-negative entries.

Appropriate generalizations of the cone of completely positive matrices exist to characterize separability of arbitrary CLDUI matrices $X_{A, B}$ (pairwise completely positive matrices) and of LDOI matrices $X_{A, B, C}$ (triplewise completely positive matrices). The membership problem for these cones is still NP-hard.

Symmetric bipartite unitary operators

Unitary diagonal symmetric operators

LDOI bipartite operators $X=X_{A, B, C}$ admit the following block-decomposition

$$
X=B \oplus\left(\bigoplus_{i<j}\left[\begin{array}{ll}
A_{i j} & C_{i j} \\
C_{j i} & A_{j i}
\end{array}\right]\right)
$$

Theorem. A LDOI matrix $X=X_{A, B, C}$ is unitary iff the following conditions hold

1. B is unitary
2. $\forall i<j$, there exists a phase $\omega_{i j}$ such that $A_{j i}=\omega_{i j} \bar{A}_{i j}$ and $A_{j i}=-\omega_{i j} \bar{C}_{i j}$
3. $\forall i<j \quad\left|A_{i j}\right|^{2}+\left|C_{i j}\right|^{2}=1$
@\#!*\& and Hadamard matrices

Dual unitaries

- A bipartite unitary matrix $X \in \mathscr{U}_{d^{2}}$ is called a dual unitary if its realignment U^{R} is also a unitary matrix

$$
U_{i j, k l}^{R}=U_{i k, j l}
$$

Theorem. An LDOI matrix $X_{A, B, C}$ is dual unitary iff

1. A and B are unitary

2. $\forall i<j \quad\left|A_{i j}\right|^{2}=\left|B_{i j}\right|^{2}=1-\left|C_{i j}\right|^{2}$

$$
\text { Example. } F^{R}=F
$$

 Example. $I^{R}=d \omega=^{R}=$ (
3. $\forall i<j$, there exist complex phases $\omega_{i j} \in \mathbb{T}$ such that

$$
A_{j i}=\omega_{i j} \overline{A_{i j}} \quad B_{j i}=\omega_{i j} \overline{j_{i j}} \quad C_{j i}=-\omega_{i j} \overline{C_{i j}}
$$

In particular, an LDUI matrix $X_{A, C}$ is dual unitary iff

$$
\forall i, j \quad C_{i j} \in \mathbb{T} \quad \text { and } \quad A=\operatorname{diag}(C)
$$

Entangling power of a bipartite unitary

- Given a bipartite pure quantum state $|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, we define its linear entropy as

$$
\mathscr{E}(|\psi\rangle)=1-\operatorname{Tr}\left[\left(\operatorname{Tr}_{2}|\psi\rangle\langle\psi|\right)^{2}\right]=1-4 \sqrt[4]{4}
$$

- The linear entropy is an entanglement measure: it measures how entangled the pure state $|\psi\rangle$ is
- For a bipartite unitary matrix $X \in \mathscr{U}_{d^{2}}$, we define its entangling power as the amount of entanglement it creates, on average, when acting on a separable state

$$
e_{p}(X)=\left(\frac{d+1}{d-1}\right) \mathbb{E}_{\phi, \psi \sim \mathrm{Haar}}[\mathscr{E}(X \cdot|\phi\rangle \otimes|\psi\rangle)]
$$

Maximum entangling power and Hadamard matrices

- Theorem. The maximum entangling power of an LDUI dual unitary matrix $X_{A, C}$ is achieved when C is a complex Hadamard matrix, with the maximum value

$$
\max _{X \text { dual unitary }} e_{p}(X)=\frac{d}{d+1} \rightarrow 1 \quad \text { as } \quad d \rightarrow \infty
$$

- In this case, the quantity $e_{p}(X)$ is related to the following measure of Hadamardness

$$
\mathfrak{h}(C):=\operatorname{Tr}\left[\left(C C^{\dagger}\right)^{2}\right]=\sum_{i, j=1}^{d}\left|\left\langle C_{i, \cdot}, C_{j,}\right\rangle\right|^{2}=\sum_{i, j=1}^{d}\left|\sum_{k=1}^{d} C_{i k} \bar{C}_{j k}\right|^{2}
$$

Real Hadamards

In the case where the matrix C is real, the quantity $\mathfrak{h}(C)$ cannot attain its minimum value d^{3} unless d is a multiple of 4

$$
\mathfrak{h}(C):=\operatorname{Tr}\left[\left(C C^{\dagger}\right)^{2}\right]=\sum_{i, j=1}^{d}\left|\left\langle C_{i, \cdots}, C_{j,}\right\rangle\right|^{2}=\sum_{i, j=1}^{d}\left|\sum_{k=1}^{d} C_{i k} \bar{C}_{j k}\right|^{2}
$$

$\min \mathfrak{h}(C)$ for sign matrices C

Matrix size	$\min \mathfrak{h}(C)$	\# argmin \mathfrak{h}	$C \in \operatorname{argmin} \mathfrak{h}$
$d=3$	33	6	$\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
$d=5$	145	120	$\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & -1 & 1\end{array}\right]$
$d=6$	264	28800	$\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1\end{array}\right]$

Open question. What is the minimal value of $\mathfrak{h}(C)$ for values of d which are not multiples of 4 ? Is it true that for odd values of d, it is attained for matrices C with the property that all the scalar products between different rows have absolute value 1?

Real Hadamards

In the case where the matrix C is real, the quantity $\mathfrak{h}(C)$ cannot attain its minimum value d^{3} unless d is a multiple of 4

$$
\mathfrak{h}(C):=\operatorname{Tr}\left[\left(C C^{\dagger}\right)^{2}\right]=\sum_{i, j=1}^{d}\left|\left\langle C_{i, \cdots}, C_{j,}\right\rangle\right|^{2}=\sum_{i, j=1}^{d}\left|\sum_{k=1}^{d} C_{i k} \bar{C}_{j k}\right|^{2}
$$

$\min \mathfrak{h}(C)$ for sign matrices C

Matrix size	$\min \mathfrak{h}(C)$	\# argmin \mathfrak{h}	$C \in \operatorname{argmin} \mathfrak{h}$
$d=3$	33	6	$\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
$d=5$	145	120	$\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & -1 & 1\end{array}\right]$
$d=6$	264	28800	$\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1\end{array}\right]$

Open question. What is the minimal value of $\mathfrak{h}(C)$ for values of d which are not multiples of 4 ? Is it true that for odd values of d, it is attained for matrices C with the property that all the scalar products between different rows have absolute value 1?

