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Unitary symmetry in quantum information



Symmetry in quantum theory
• Quantum states are modeled mathematically by density matrices 





• Unitary operators encode time evolution





• We would like to consider quantum states which are left invariant by a certain 
class of unitary operators


Example. If  for all , then  must be a scalar matrix, i.e. 
 for some constant . For density matrices, . 

{ρ ∈ ℳd(ℂ) : ρ ≥ 0  and  Tr ρ = 1}

ρ ↦ UρU*, for U ∈ 𝒰d

UXU* = X U ∈ 𝒰d X
X = cId c ∈ ℂ c = 1/d



Bipartite operators
• Quantum entanglement is of the key features of quantum theory. It appears 

when one considers two quantum systems. 


• In this case, the set of quantum states is given by bipartite matrices:


{ρAB ∈ ℳd ⊗ ℳd ≅ ℳd2 : ρ ≥ 0  and  Tr ρ = 1}



Two examples
• Separable states are bipartite quantum 

states which can be written as convex 
combinations of product states 


• Entangled states are the non-separable 
states. The most important example is the 
maximally entangled state


ρA ⊗ ρB

ω =
1
d

d

∑
i,j=1

| ii⟩⟨jj |



(Full) Unitary symmetry in the bipartite case
Theorem. Let  be a bipartite operator. Then





where the (unitary) flip operator is defined by .  

X ∈ ℳd ⊗ ℳd

∀U ∈ 𝒰d, (U ⊗ U)X(U ⊗ U)* = X ⟺ X = αId2 + βF  for α, β ∈ ℂ

F x ⊗ y = y ⊗ x



Isotropic quantum states
Theorem. Let  be a bipartite density matrix. Then





i.e.  must be a convex combination of the maximally mixed state and the 
maximally entangled state. Such quantum states are called isotropic.  

ρ ∈ ℳd ⊗ ℳd

∀U ∈ 𝒰d, (U ⊗ Ū)ρU* ⊗ U⊤ = ρ ⟺ ρ = (1 − p)
I

d2
+ pω  for p ∈ [−1/(d2 − 1),1]

ρ



Diagonal unitary/orthogonal symmetry



The diagonal subgroup
• Since requiring the full unitary symmetry yields matrices (resp. quantum 

states) with only 2 parameters, we shall consider the much smaller subgroups








• In the case of a single tensor factor, we have


𝒟𝒰d := {diag(eiθ1, …, eiθd) : θ ∈ ℝd}

𝒟𝒪d := {diag(ϵ1, …, ϵd) : ϵ ∈ {±1}d}

∀U ∈ 𝒟𝒰d, UXU* = X ⟺ X = diag(X)



Diagonally symmetric bipartite matrices
Definition. A bipartite matrix  
is called: 


• LDUI (local diagonal unitary invariant) if


 


• CLDUI (conjugate LDUI) if


 


• LDOI (local diagonal orthogonal invariant) if


 

X ∈ ℳd ⊗ ℳd

∀U ∈ 𝒟𝒰d, (U ⊗ U)X(U* ⊗ U*) = X

∀U ∈ 𝒟𝒰d, (U ⊗ Ū)X(U* ⊗ U⊤) = X

∀U ∈ 𝒟𝒪d, (U ⊗ U)X(U⊤ ⊗ U⊤) = X



Characterization theorem - CDLUI case
Theorem. A matrix  is CLDUI iff there exist matrices  
having the same diagonal  such that


X ∈ ℳd ⊗ ℳd A, B ∈ ℳd
diag A = diag B =: δ ∈ ℂd

Xij,kl = 1i=k,j=lAij + 1i=j,k=lBik − 1i=j=k=lδi



Characterization theorem - LDUI and LDOI
Theorem. A matrix  is LDUI iff there exist matrices  
having the same diagonal  such that


X ∈ ℳd ⊗ ℳd A, C ∈ ℳd
diag A = diag C =: δ ∈ ℂd

Xij,kl = 1i=k,j=lAij + 1i=l,j=kCij − 1i=j=k=lδi

Theorem. A matrix  is LDOI iff there exist matrices 
 having the same diagonal  

such that


X ∈ ℳd ⊗ ℳd
A, B, C ∈ ℳd diag A = diag B = diag C =: δ ∈ ℂd

Xij,kl = 1i=k,j=lAij + 1i=j,k=lBik + 1i=l,j=kCij − 21i=j=k=lδi



Three examples
• The identity matrix is CLDUI with 




• The maximally entangled state is 

CLDUI with 


• The flip operator is LDUI with 

A = Jd, B = Id

A = Id, B = Jd

A = Id, B = Jd



Symmetric bipartite PSD operators



Properties of symmetric operators
Theorem. A bipartite LDOI operator  is


• self-adjoint iff  is real and  are self-adjoint


• positive semidefinite iff the following three conditions hold:


1.  for all 


2.  is positive semidefinite


3.  for all 


Note that LDUI operators correspond to  diagonal, and CLDUI operators 
correspond to  diagonal.

X = XA,B,C

A B, C

Aij ≥ 0 i, j

B

AijAji ≥ |Cij |
2 i, j

B
C



Separability for diagoal symmetric matrices
Theorem. A bipartite CLDUI operator of the form  is separable iff the 
matrix  is completely positive, i.e.





In dimensions  completely positive matrices are precisely positive 
semidefinite matrices with non-negative entries. 


Appropriate generalizations of the cone of completely positive matrices exist to 
characterize separability of arbitrary CLDUI matrices  (pairwise completely 
positive matrices) and of LDOI matrices  (triplewise completely positive 
matrices). The membership problem for these cones is still NP-hard.

X = XA,A
A

∃R ∈ ℳd×D(ℝ+) s.t. A = RR⊤

d ≤ 4

XA,B
XA,B,C



Symmetric bipartite unitary operators



Unitary diagonal symmetric operators
LDOI bipartite operators  admit the following block-decomposition





Theorem. A LDOI matrix  is unitary iff the following conditions hold


1.  is unitary


2. ,  there exists a phase  such that  and 


3.

X = XA,B,C

X = B ⊕ ⨁
i<j [

Aij Cij

Cji Aji]
X = XA,B,C

B

∀i < j ωij Aji = ωijĀij Aji = − ωijC̄ij

∀i < j |Aij |
2 + |Cij |

2 = 1



@#!*& and Hadamard matrices



Dual unitaries
• A bipartite unitary matrix  is called a dual unitary if its realignment  is also a unitary matrix 





Theorem. An LDOI matrix  is dual unitary iff


1.  and  are unitary


2. 


3. , there exist complex phases  such that





In particular, an LDUI matrix  is dual unitary iff


X ∈ 𝒰d2 UR

UR
ij,kl = Uik,jl

XA,B,C

A B

∀i < j |Aij |
2 = |Bij |

2 = 1 − |Cij |
2

∀i < j ωij ∈ 𝕋

Aji = ωijAij Bji = ωijBij Cji = − ωijCij

XA,C

∀i, j Cij ∈ 𝕋 and A = diag(C)

Example. FR = F

Example. IR = dω



Entangling power of a bipartite unitary
• Given a bipartite pure quantum state , we define its linear 

entropy as 





• The linear entropy is an entanglement measure: it measures how entangled the 
pure state   is


• For a bipartite unitary matrix , we define its entangling power as the 
amount of entanglement it creates, on average, when acting on a separable state


|ψ⟩ ∈ ℂd ⊗ ℂd

ℰ( |ψ⟩) = 1 − Tr[(Tr2 |ψ⟩⟨ψ | )2]

|ψ⟩

X ∈ 𝒰d2

ep(X) = ( d + 1
d − 1 ) 𝔼ϕ,ψ∼Haar[ℰ(X ⋅ |ϕ⟩ ⊗ |ψ⟩)],



Maximum entangling power and Hadamard matrices

• Theorem. The maximum entangling power of an LDUI dual unitary matrix  
is achieved when  is a complex Hadamard matrix, with the maximum value   





• In this case, the quantity  is related to the following measure of 
Hadamardness


XA,C
C

max
X dual unitary

ep(X) =
d

d + 1
→ 1  as  d → ∞ .

ep(X)

𝔥(C) := Tr[(CC†)2] =
d

∑
i,j=1

|⟨Ci,⋅, Cj,⋅⟩ |2 =
d

∑
i,j=1

d

∑
k=1

CikC̄jk

2



Real Hadamards
In the case where the matrix C is real, the quantity  cannot attain its 
minimum value  unless  is a multiple of 4


𝔥(C)
d3 d

𝔥(C) := Tr[(CC†)2] =
d

∑
i,j=1

|⟨Ci,⋅, Cj,⋅⟩ |2 =
d

∑
i,j=1

d

∑
k=1

CikC̄jk

2

Open question. What is the minimal value of 
 for values of  which are not multiples of 4? 

Is it true that for odd values of , it is attained for 
matrices  with the property that all the scalar 
products between different rows have absolute 
value 1?

𝔥(C) d
d

C
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𝔥(C) d
d

C


