Some applications of free spectrahedra to quantum information theory

Ion Nechita (CNRS, LPT Toulouse)
— joint work with Andreas Bluhm [1807.01508, 1809.04514, 2105.11302, 2202.13993]

33rd IWOTA, Krakow - September 10th 2022

What this talk is about

We establish a connection between two topics:

- Incompatibility of quantum measurements
- Inclusion of free spectrahedra, geometric objects which generalize polyhedra

The relation we put forward allows us to find the most incompatible quantum measurements [DFK19] in different settings. These objects are of great importance for the foundations of quantum mechanics due to their non-classical behavior.

We can also import quantum information techniques (such as quantum cloning) to the inclusion problem of free spectrahedra. The latter can be seen as one possible positive semidefinite relaxation of combinatorial optimization problems [HKMS19].

Talk outline

Incompatibility in QM

Free spectrahedra

Main results

Proof ideas

Incompatibility in QM

Quantum measurements. Compatibility

- Quantum states \rightsquigarrow unit vectors in a Hilbert space: $\psi \in \mathbb{C}^{d},\|\psi\|=1$
- Quantum measurements are modeled by POVMs (Positive Operator Valued Measures)

$$
A_{1}, \ldots, A_{k} \in M_{d}(\mathbb{C})^{\mathrm{sa}}, \quad A_{i} \geq 0, \quad \sum_{i=1}^{k} A_{i}=I_{d}
$$

- Born's rule: $\mathbb{P}\left[\right.$ outcome i is observed] $=\left\langle\psi, A_{i} \psi\right\rangle$

Definition

Two POVMs, $A=\left(A_{1}, \ldots, A_{k}\right)$ and $B=\left(B_{1}, \ldots, B_{l}\right)$, are called compatible if there exists a third POVM $C=\left(C_{i j}\right)_{i \in[k], j \in[/]}$ such that

$$
\forall i \in[k], \quad A_{i}=\sum_{j=1}^{\prime} C_{i j} \quad \text { and } \quad \forall j \in[/], \quad B_{j}=\sum_{i=1}^{k} C_{i j}
$$

The definition generalizes to g-tuples of POVMs $A^{(1)}, \ldots, A^{(g)}$, having respectively $k_{1}, \ldots k_{g}$ outcomes, where the joint POVM C has outcome set $\left[k_{1}\right] \times \cdots \times\left[k_{g}\right]$.

What does it mean?

- Compatible measurements can be simulated by a single joint measurement, by classically post-processing its outputs
- Compatibility appears also in the setting of quantum channels [HMZ16]

The compatibility game

We are given the Alice's $A=\left(A_{1}, A_{2}, A_{3}\right)$ and Bob's $B=\left(B_{1}, B_{2}, B_{3}\right)$ POVMs. GOAL: Fill in the 3×3 table with positive semidefinite operators (Marek ${ }^{\text {) }}$) such that the row sums are the A 's and the column sums are the B 's

Two examples

- Commuting POVMs $\left[A_{i}, B_{j}\right]=0$ are compatible: define $C_{i j}=A_{i} B_{j}=A_{i}^{1 / 2} B_{j} A_{i}^{1 / 2}$. Since the operators commute, $C_{i j} \geq 0$ Partial converse: if the POVM A is projective $\left(A_{i}^{2}=A_{i}\right)$, then A and B are compatible iff they commute
- Consider e the canonical basis of \mathbb{C}^{2} and the "unbiased" basis $f=\left(f_{1}, f_{2}\right)$ with $f_{1}=\binom{1}{1} / \sqrt{2}$ and $f_{2}=\binom{1}{-1} / \sqrt{2}$. The dichotomic (2-outcome) POVMs $A=\left(P_{e_{1}}, P_{e_{2}}\right)$ and $B=\left(P_{f_{1}}, P_{f_{2}}\right)$ are incompatible

$$
\sum=P_{f_{1}} \quad \sum=P_{f_{2}}
$$

Noisy POVMs

- POVMs can be made compatible by adding noise
- Example: dichotomic POVMs and white noise, $s \in[0,1]$

$$
\left(A_{1}, A_{2}\right) \mapsto s\left(A_{1}, A_{2}\right)+(1-s)\left(\frac{l}{2}, \frac{l}{2}\right) \quad \text { or } \quad A_{i} \mapsto s A_{i}+(1-s) \frac{l}{2}
$$

- Taking $s=1 / 2$ suffices to render any pair of dichotomic POVMs compatible [DFK19]

$$
\begin{aligned}
& \rightsquigarrow \text { define } C_{i j}:=\left(A_{i}+B_{j}\right) / 4 \\
& \rightsquigarrow \text { we have } \sum_{j} C_{i j}=\left(\sum_{j} A_{i}+\sum_{j} B_{j}\right) / 4=\frac{1}{2} A_{i}+\frac{1}{2} \frac{1}{2}
\end{aligned}
$$

- From now on, we focus on dichotomic (YES/NO) POVMs $(E, I-E)$ for operators $0 \leq E \leq I$ called quantum effects

Definition

The compatibility region for g measurements on \mathbb{C}^{d} is the set

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C}),\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

Compatibility region

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C}),\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

- The set $\Gamma(g, d)$ is convex
- For all $i \in[g], e_{i} \in \Gamma(g, d)$: every measurement is compatible with $g-1$ trivial measurements
- For $d \geq 2,(1,1, \ldots, 1) \notin \Gamma(g, d)$: there exist incompatible measurements

- For all $d \geq 2, \Gamma(2, d)$ is a quarter-circle [BH08, BHSS13]
- Generally speaking, the set $\Gamma(g, d)$ tells us how robust (to noise) is the incompatibility of g dichotomic measurements on \mathbb{C}^{d}

GOAL: compute the set $\Gamma(g, d)$ for all g, d

Free spectrahedra

Free spectrahedra

- A polyhedron is defined as the intersection of half-spaces

$$
\left\{x \in \mathbb{R}^{g}:\left\langle h_{i}, x\right\rangle \leq 1, \quad \forall i \in[k]\right\}
$$

- A spectrahedron is given by PSD constraints: for $A=\left(A_{1}, \ldots, A_{g}\right) \in\left(\mathcal{M}_{d}^{\text {sa }}\right)^{g}$

$$
\mathcal{D}_{A}(1):=\left\{x \in \mathbb{R}^{g}: \sum_{i=1}^{g} x_{i} A_{i} \leq I_{d}\right\}
$$

- $\mathcal{D}_{\left(\sigma_{X}, \sigma_{Y}, \sigma_{Z}\right)}(1)=\left\{(x, y, z) \in \mathbb{R}^{3}: x \sigma_{X}+y \sigma_{Y}+z \sigma_{Z} \leq I_{2}\right\}=$ Bloch ball
- A free spectrahedron is the matricization of a spectrahedron [Vin14]

$$
\mathcal{D}_{A}:=\bigsqcup_{n=1}^{\infty} \mathcal{D}_{A}(n) \quad \text { with } \quad \mathcal{D}_{A}(n):=\left\{X \in\left(\mathcal{M}_{n}^{\text {sa }}\right)^{g}: \sum_{i=1}^{g} X_{i} \otimes A_{i} \leq I_{n d}\right\}
$$

Examples: the cube and the diamond

The matrix cube is the free spectrahedron defined by

$$
\mathcal{D}_{\square, g}:=\bigsqcup_{n=1}^{\infty}\left\{X \in\left(\mathcal{M}_{n}^{\text {sa }}\right)^{g}:\left\|X_{i}\right\| \leq 1, \quad \forall i \in[g]\right\}
$$

- At level one, $\mathcal{D}_{\square, g}(1)$ is the unit ball of the ℓ^{∞} norm on \mathbb{R}^{g}
- As a free spectrahedron, it is defined by $2 g \times 2 g$ diagonal matrices $\mathcal{D}_{\square, g}=\mathcal{D}_{K_{1}, \ldots, K_{g}}$, with $K_{i}=\operatorname{diag}\left(e_{i}\right) \oplus \operatorname{diag}\left(-e_{i}\right)$

The matrix diamond is the free spectrahedron defined by

$$
\mathcal{D}_{\diamond, g}:=\bigsqcup_{n=1}^{\infty}\left\{X \in\left(\mathcal{M}_{n}^{s a}\right)^{g}: \sum_{i=1}^{g} \varepsilon_{i} X_{i} \leq I_{n}, \quad \forall \varepsilon \in\{ \pm 1\}^{g}\right\}
$$

- At level one, $\mathcal{D}_{\diamond, g}(1)$ is the unit ball of the ℓ^{1} norm on \mathbb{R}^{g}
- As a free spectrahedron, it is defined by $2^{g} \times 2^{g}$ diagonal matrices $\mathcal{D}_{\diamond, g}=\mathcal{D}_{L_{1}, \ldots, L_{g}}$, with $L_{i}=I_{2} \otimes \cdots \otimes I_{2} \otimes \operatorname{diag}(1,-1) \otimes I_{2} \otimes \cdots \otimes I_{2}$

Spectrahedral inclusion

- Consider two free spectrahedra defined by g-tuples of matrices $\left(A_{1}, \ldots, A_{g}\right)$ and $\left(B_{1}, \ldots, B_{g}\right)$
- We say that \mathcal{D}_{A} is contained in \mathcal{D}_{B} and we write $\mathcal{D}_{A} \subseteq \mathcal{D}_{B}$ if, for all $n \geq 1, \mathcal{D}_{A}(n) \subseteq \mathcal{D}_{B}(n)$
- Clearly, $\mathcal{D}_{A} \subseteq \mathcal{D}_{B} \Longrightarrow \mathcal{D}_{A}(1) \subseteq \mathcal{D}_{B}(1)$. For the converse implication to hold, one may need to shrink $\mathcal{D}_{A} \ldots$

Definition

For a free spectrahedron \mathcal{D}_{A}, we define its set of inclusion constants as

$$
\begin{aligned}
\Delta_{A}(g, d):=\left\{s \in[0,1]^{g}\right. & : \text { for all } g \text {-tuples } B_{1}, \ldots, B_{g} \in \mathcal{M}_{d}(\mathbb{C})^{\text {sa }} \\
& \left.\mathcal{D}_{A}(1) \subseteq \mathcal{D}_{B}(1) \Longrightarrow s . \mathcal{D}_{A} \subseteq \mathcal{D}_{B}\right\}
\end{aligned}
$$

- The inclusion constants for the matrix cube play an important role in combinatorial optimization [HKMS19]
- We shall be concerned with the inclusion set for the matrix diamond, which we denote by $\Delta(g, d)$; it is the same as the one of the matrix cube [BN22a]

Main results

Compatibility in $\mathbf{Q M} \Longleftrightarrow$ matrix diamond inclusion

To a g-tuple of selfadjoint matrices $E \in\left(\mathcal{M}_{d}^{s a}\right)^{g}$, we associate the free spectrahedron defined by the matrices $2 E_{i}-I_{d}$:

$$
\mathcal{D}_{2 E-I}:=\bigsqcup_{n=1}^{\infty}\left\{X \in\left(\mathcal{M}_{n}^{\text {sa }}\right)^{g}: \sum_{i=1}^{g} X_{i} \otimes\left(2 E_{i}-I_{d}\right) \leq I_{n d}\right\}
$$

Theorem ([BN18])

Let $E \in\left(\mathcal{M}_{d}^{\text {sa }}\right)^{g}$ be g-tuple of selfadjoint matrices. Then:

- The matrices E are quantum effects $\Longleftrightarrow \mathcal{D}_{\diamond, g}(1) \subseteq \mathcal{D}_{2 E-\prime}(1)$
- The matrices E are compatible quantum effects $\Longleftrightarrow \mathcal{D}_{\diamond, g} \subseteq \mathcal{D}_{2 E-1}$

At the intermediate levels $1 \leq n \leq d, \mathcal{D}_{\diamond, g}(n) \subseteq \mathcal{D}_{2 E-I}(n)$ iff for all isometries $V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{d}$, the compressed effects $V^{*} E_{i} V$ are compatible.

Moreover, the compatibility region is equal to the set of inclusion constants of the matrix diamond: $\forall g, d, \Gamma(g, d)=\Delta(g, d)$.

The same results hold in the general (non-dichotomic) setting. One has to replace the matrix diamond by the matrix jewel $\mathcal{D}_{\theta, \mathbf{k}}$ [BN20]

Consequences

Many things are known about the matrix diamond

- For all $g, d, \frac{1}{2 d}(1,1, \ldots, 1) \in \Delta(g, d)$ [HKMS19]
- For all $g, d, \mathrm{QC}_{g}:=\left\{s \in[0,1]^{g}: \sum_{i} s_{i}^{2} \leq 1\right\} \subseteq \Delta(g, d)[$ PSS18]

Many things are known about (in-)compatibility

- Many small g, d cases completely solved
- Approximate quantum cloning [Kay16] \Longrightarrow compatibility Clone $(g, d):=\left\{s \in[0,1]^{g}: \exists\right.$ quantum channel $\Phi: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}^{\otimes g}$ s.t.

$$
\left.\forall i \in[g], \quad \Phi_{i}(X)=s_{i} X+\left(1-s_{i}\right) \frac{\operatorname{Tr} X}{d}\right\}
$$

- Connection with tensor norms [BN22b]

Theorem ([BN18])

For all g and $d \geq 2^{\lceil(g-1) / 2\rceil}, \Gamma(g, d)=\Delta(g, d)=\mathrm{QC}_{g}$

Proof ideas

Inclusion of spectrahedra and (completely) positive maps

Theorem ([НКм13])

Let $A \in\left(\mathcal{M}_{D}^{s a}(\mathbb{C})\right)^{g}, B \in\left(\mathcal{M}_{d}^{s a}(\mathbb{C})\right)^{g}$ such that $\mathcal{D}_{A}(1)$ is bounded. Then, $\mathcal{D}_{A}(n) \subseteq \mathcal{D}_{B}(n)$ iff the unital linear map

$$
\begin{aligned}
\Phi: \operatorname{span}\left\{I, A_{1}, \ldots, A_{g}\right\} & \rightarrow \mathcal{M}_{d}^{s a}(\mathbb{C}) \\
A_{i} & \mapsto B_{i}
\end{aligned}
$$

is n-positive.

Sketch of the proof of the main theorem:

- Level 1: the extremal points of $\mathcal{D}_{\diamond, g}(1)$ are $\pm e_{i}$
- The inclusion $\mathcal{D}_{\diamond, g} \subseteq \mathcal{D}_{2 E-।}$ holds iff the unital map $\Phi: I_{2} \otimes \cdots \otimes I_{2} \otimes \operatorname{diag}(1,-1) \otimes I_{2} \otimes \cdots \otimes I_{2} \mapsto 2 E_{i}-I_{d}$ is $C P$
- Arveson's extension theorem [Pau02, Theorem 6.2]: Φ has a (completely) positive extension $\tilde{\Phi}$ to $\mathbb{R}^{2^{g}}$
- $C_{\varepsilon}:=\tilde{\Phi}(\varepsilon)$ is a joint POVM for the E_{i} 's, where $\{\varepsilon\}$ is a basis of $\mathbb{R}^{2^{g}}$

Maximally incompatible quantum effects

Lemma ([Hru16])

For $d=2^{k}$, there exist $2 k+1$ anti-commuting, self-adjoint, unitary matrices $F_{1}, \ldots, F_{2 k+1} \in \mathcal{U}_{d}$. Moreover, 2^{k} is the smallest dimension where such a $(2 k+1)$-tuple exists.

- For $k=0$, take $F_{1}^{(0)}:=[1]$
- For $k \geq 1$, define $F_{i}^{(k+1)}=\sigma_{X} \otimes F_{i}^{(k)} \forall i \in[2 k+1]$ and

$$
F_{2 k+2}^{(k+1)}=\sigma_{Y} \otimes I_{2^{k}}, F_{2 k+3}^{(k+1)}=\sigma_{Z} \otimes I_{2^{k}}
$$

- These matrices satisfy, for all $x \in \mathbb{R}_{+}^{g},\left\|\sum_{i=1}^{g} x_{i} F_{i}\right\|_{\infty}=\|x\|_{2}$, and $\left\|\sum_{i=1}^{g} x_{i} \bar{F}_{i} \otimes F_{i}\right\|_{\infty}=\|x\|_{1}$
- For d large enough, the maximally incompatible g-tuple of quantum effects in \mathcal{M}_{d} is given by $E_{i}=\left(F_{i}+I_{d}\right) / 2$

The take-home slide

Measurement compatibility in $\mathrm{QM} \Longleftrightarrow$ matrix diamond inclusion

- A measurement in QM (POVM): $A_{i} \in \mathcal{M}_{d}(\mathbb{C}), A_{i} \geq 0, \sum_{i} A_{i}=I_{d}$
- Measurements $\left(A_{i}\right),\left(B_{j}\right)$ are compatible if there exists a joint measurement ($C_{i j}$) having marginals $A, B: A_{i}=\sum_{j} C_{i j}$ and $B_{j}=\sum_{i} C_{i j}$
- Free spectrahedra: $\mathcal{D}_{A}:=\bigsqcup_{n=1}^{\infty}\left\{X \in\left(\mathcal{M}_{n}^{\text {sa }}\right)^{g}: \sum_{i=1}^{g} X_{i} \otimes A_{i} \leq I_{n d}\right\}$
- Matrix diamond: $\mathcal{D}_{\diamond, g}=\bigsqcup_{n=1}^{\infty}\left\{X \in \mathcal{M}_{n}^{g}: \sum_{i=1}^{g} \varepsilon_{i} X_{i} \leq I_{n}, \forall \varepsilon \in\{ \pm 1\}^{g}\right\}$

Theorem

Let $E \in\left(\mathcal{M}_{d}^{s a}\right)^{g}$ be g-tuple of selfadjoint matrices. Then:

$$
\begin{aligned}
E \text { are quantum effects } & \Longleftrightarrow \mathcal{D}_{\diamond, g}(1) \subseteq \mathcal{D}_{2 E-I}(1) \\
E \text { are compatible quantum effects } & \Longleftrightarrow \mathcal{D}_{\diamond, g} \subseteq \mathcal{D}_{2 E-I}
\end{aligned}
$$

For all g, d, compatibility region $\Gamma(g, d)=\Delta(g, d)$ inclusion constants.

References

Paul Busch and Teiko Heinosaari.
Approximate joint measurements of qubit observables.
Quantum Information \& Computation, 8(8):797-818, 2008.
[BHSS13] Paul Busch, Teiko Heinosaari, Jussi Schultz, and Neil Stevens.
Comparing the degrees of incompatibility inherent in probabilistic physical theories.
EPL (Europhysics Letters), 103(1):10002, 2013.
[BN18] Andreas Bluhm and Ion Nechita.
Joint measurability of quantum effects and the matrix diamond.
Journal of Mathematical Physics, 59(11):112202, 2018.
[BN20] Andreas Bluhm and Ion Nechita.
Compatibility of quantum measurements and inclusion constants for the matrix jewel.
SIAM Journal on Applied Algebra and Geometry, 4(2):255-296, 2020.
[BN22a] Andreas Bluhm and Ion Nechita.
Maximal violation of steering inequalities and the matrix cube.
Quantum, 6:656, 2022.
[BN22b] Andreas Bluhm and Ion Nechita.
A tensor norm approach to quantum compatibility.
Journal of Mathematical Physics, 63(6):062201, 2022.
[DFK19] Sébastien Designolle, Máté Farkas, and Jedrzej Kaniewski.
Incompatibility robustness of quantum
measurements: a unified framework.
New Journal of Physics, 21(11):113053, 2019.
[HKM13] J. William Helton, Igor Klep, and Scott McCullough.

The matricial relaxation of a linear matrix inequality.
Mathematical Programming, 138(1-2):401-445, 2013.
[HKMS19] J. William Helton, Igor Klep, Scott McCullough, and Markus Schweighofer.
Dilations, linear matrix inequalities, the matrix cube problem and beta distributions.
Memoirs of the American Mathematical Society, 257(1232), 2019.
[HMZ16] Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman.
An invitation to quantum incompatibility.
Journal of Physics A: Mathematical and Theoretical, 49(12):123001, 2016.
[Hru16] Pavel Hrubeš.
On families of anticommuting matrices.
Linear Algebra and its Applications, 493:494-507, 2016.
[Kay16] Alastair Kay.
Optimal universal quantum cloning: Asymmetries and fidelity measures.
Quantum Information and Computation, 16(11 \&
12):0991-1028, 2016.
[Pau02] Vern Paulsen.
Completely bounded maps and operator algebras, volume 78.
Cambridge University Press, 2002.
[PSS18] Benjamin Passer, Orr Moshe Shalit, and Baruch Solel.
Minimal and maximal matrix convex sets.
Journal of Functional Analysis, 274:3197-3253, 2018.
[Vin14] Cynthia Vinzant.
What is... a spectrahedron.
Notices Amer. Math. Soc, 61(5):492-494, 2014.

