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What this talk is about

We establish a connection between two topics:

Incompatibility of quantum measurements
Inclusion of free spectrahedra, geometric objects which generalize
polyhedra

The relation we put forward allows us to find the most incompatible
quantum measurements [DFK19] in different settings. These objects are of
great importance for the foundations of quantum mechanics due to their
non-classical behavior.

We can also import quantum information techniques (such as quantum
cloning) to the inclusion problem of free spectrahedra. The latter can be
seen as one possible positive semidefinite relaxation of combinatorial
optimization problems [HKMS19].
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Incompatibility in QM



Quantum measurements. Compatibility

Quantum states  unit vectors in a Hilbert space: ψ ∈ Cd , ‖ψ‖ = 1
Quantum measurements are modeled by POVMs (Positive Operator
Valued Measures)

A1, . . . ,Ak ∈ Md(C)sa, Ai ≥ 0,
k∑

i=1
Ai = Id

Born’s rule: P[outcome i is observed] = 〈ψ,Aiψ〉

Definition
Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl), are called
compatible if there exists a third POVM C = (Cij)i∈[k],j∈[l] such that

∀i ∈ [k], Ai =
l∑

j=1
Cij and ∀j ∈ [l], Bj =

k∑
i=1

Cij

The definition generalizes to g-tuples of POVMs A(1), . . . ,A(g), having
respectively k1, . . . kg outcomes, where the joint POVM C has outcome
set [k1] × · · · × [kg ].



What does it mean?
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Compatible measurements can be simulated by a single joint
measurement, by classically post-processing its outputs
Compatibility appears also in the setting of quantum channels [HMZ16]



The compatibility game

∑
= A1

∑
= A2

∑
= A3

∑
= B1

∑
= B2

∑
= B3

We are given the Alice’s A = (A1,A2,A3) and Bob’s B = (B1,B2,B3)
POVMs. GOAL: Fill in the 3 × 3 table with positive semidefinite
operators (Marek ) such that the row sums are the A’s and the
column sums are the B’s



Two examples

Commuting POVMs [Ai ,Bj ] = 0 are compatible: define
Cij = AiBj = A1/2

i BjA1/2
i . Since the operators commute, Cij ≥ 0

Partial converse: if the POVM A is projective (A2
i = Ai), then A and B

are compatible iff they commute

Consider e the canonical basis of C2 and the “unbiased” basis
f = (f1, f2) with f1 = ( 1

1 ) /
√

2 and f2 =
( 1

−1
)
/
√

2. The dichotomic
(2-outcome) POVMs A = (Pe1 ,Pe2) and B = (Pf1 ,Pf2) are incompatible

∑
= Pe1

∑
= Pe2

∑
= Pf1

∑
= Pf2



Noisy POVMs

POVMs can be made compatible by adding noise
Example: dichotomic POVMs and white noise, s ∈ [0, 1]

(A1,A2) 7→ s(A1,A2) + (1 − s)( I
2 ,

I
2 ) or Ai 7→ sAi + (1 − s) I

2
Taking s = 1/2 suffices to render any pair of dichotomic POVMs
compatible [DFK19]

 define Cij := (Ai + Bj)/4
 we have

∑
j Cij = (

∑
j Ai +

∑
j Bj)/4 = 1

2 Ai + 1
2

I
2

From now on, we focus on dichotomic (YES/NO) POVMs (E , I − E) for
operators 0 ≤ E ≤ I called quantum effects

Definition
The compatibility region for g measurements on Cd is the set

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),
the noisy versions siEi + (1 − si)Id/2 are compatible}



Compatibility region

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),
the noisy versions siEi + (1 − si)Id/2 are compatible}

The set Γ(g , d) is convex
For all i ∈ [g ], ei ∈ Γ(g , d): every measurement is
compatible with g − 1 trivial measurements
For d ≥ 2, (1, 1, . . . , 1) /∈ Γ(g , d): there exist
incompatible measurements
For all d ≥ 2, Γ(2, d) is a quarter-circle [BH08, BHSS13]

Generally speaking, the set Γ(g , d) tells us how robust (to noise) is the
incompatibility of g dichotomic measurements on Cd

GOAL: compute the set Γ(g , d) for all g , d



Free spectrahedra



Free spectrahedra

A polyhedron is defined as the intersection of
half-spaces

{x ∈ Rg : 〈hi , x〉 ≤ 1, ∀i ∈ [k]}

A spectrahedron is given by PSD constraints:
for A = (A1, . . . ,Ag) ∈ (Msa

d )g

DA(1) := {x ∈ Rg :
g∑

i=1
xiAi ≤ Id}

D(σX ,σY ,σZ )(1) = {(x , y , z) ∈ R3 : xσX + yσY + zσZ ≤ I2} = Bloch ball
A free spectrahedron is the matricization of a spectrahedron [Vin14]

DA :=
∞⊔

n=1
DA(n) with DA(n) := {X ∈ (Msa

n )g :
g∑

i=1
Xi ⊗ Ai ≤ Ind}



Examples: the cube and the diamond

The matrix cube is the free spectrahedron defined by

D�,g :=
∞⊔

n=1
{X ∈ (Msa

n )g : ‖Xi‖ ≤ 1, ∀i ∈ [g ]}

At level one, D�,g(1) is the unit ball of the `∞ norm on Rg

As a free spectrahedron, it is defined by 2g × 2g diagonal matrices
D�,g = DK1,...,Kg , with Ki = diag(ei) ⊕ diag(−ei)

The matrix diamond is the free spectrahedron defined by

D♦,g :=
∞⊔

n=1
{X ∈ (Msa

n )g :
g∑

i=1
εiXi ≤ In, ∀ε ∈ {±1}g}

At level one, D♦,g(1) is the unit ball of the `1 norm on Rg

As a free spectrahedron, it is defined by 2g × 2g diagonal matrices
D♦,g = DL1,...,Lg , with Li = I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1) ⊗ I2 ⊗ · · · ⊗ I2



Spectrahedral inclusion

Consider two free spectrahedra defined by g-tuples of matrices
(A1, . . . ,Ag) and (B1, . . . ,Bg)
We say that DA is contained in DB and we write DA ⊆ DB if, for all
n ≥ 1, DA(n) ⊆ DB(n)
Clearly, DA ⊆ DB =⇒ DA(1) ⊆ DB(1). For the converse implication
to hold, one may need to shrink DA...

Definition
For a free spectrahedron DA, we define its set of inclusion constants as

∆A(g , d) := {s ∈ [0, 1]g : for all g-tuples B1, . . . ,Bg ∈ Md(C)sa,

DA(1) ⊆ DB(1) =⇒ s.DA ⊆ DB}

The inclusion constants for the matrix cube play an important role in
combinatorial optimization [HKMS19]

We shall be concerned with the inclusion set for the matrix diamond,
which we denote by ∆(g , d); it is the same as the one of the matrix
cube [BN22a]



Main results



Compatibility in QM ⇐⇒ matrix diamond inclusion

To a g-tuple of selfadjoint matrices E ∈ (Msa
d )g , we associate the free

spectrahedron defined by the matrices 2Ei − Id :

D2E−I :=
∞⊔

n=1
{X ∈ (Msa

n )g :
g∑

i=1
Xi ⊗ (2Ei − Id) ≤ Ind}

Theorem ([BN18])
Let E ∈ (Msa

d )g be g-tuple of selfadjoint matrices. Then:
The matrices E are quantum effects ⇐⇒ D♦,g(1) ⊆ D2E−I(1)
The matrices E are compatible quantum effects ⇐⇒ D♦,g ⊆ D2E−I

At the intermediate levels 1 ≤ n ≤ d, D♦,g(n) ⊆ D2E−I(n) iff for all
isometries V : Cn → Cd , the compressed effects V ∗EiV are compatible.

Moreover, the compatibility region is equal to the set of inclusion
constants of the matrix diamond: ∀g , d, Γ(g , d) = ∆(g , d).

The same results hold in the general (non-dichotomic) setting. One has
to replace the matrix diamond by the matrix jewel D�,k [BN20]



Consequences

Many things are known about the matrix diamond

For all g , d , 1
2d (1, 1, . . . , 1) ∈ ∆(g , d) [HKMS19]

For all g , d , QCg := {s ∈ [0, 1]g :
∑

i s2
i ≤ 1} ⊆ ∆(g , d) [PSS18]

Many things are known about (in-)compatibility

Many small g , d cases completely solved
Approximate quantum cloning [Kay16] =⇒ compatibility

Clone(g , d) := {s ∈ [0, 1]g : ∃ quantum channel Φ : Md → M⊗g
d s.t.

∀i ∈ [g ], Φi(X) = siX + (1 − si)
Tr X

d }

Connection with tensor norms [BN22b]

Theorem ([BN18])

For all g and d ≥ 2d(g−1)/2e, Γ(g , d) = ∆(g , d) = QCg



Proof ideas



Inclusion of spectrahedra and (completely) positive maps

Theorem ([HKM13])
Let A ∈ (Msa

D (C))g , B ∈ (Msa
d (C))g such that DA(1) is bounded. Then,

DA(n) ⊆ DB(n) iff the unital linear map

Φ : span{I,A1, . . . ,Ag} → Msa
d (C)

Ai 7→ Bi

is n-positive.

Sketch of the proof of the main theorem:

Level 1: the extremal points of D♦,g(1) are ±ei

The inclusion D♦,g ⊆ D2E−I holds iff the unital map
Φ : I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1) ⊗ I2 ⊗ · · · ⊗ I2 7→ 2Ei − Id is CP
Arveson’s extension theorem [Pau02, Theorem 6.2]: Φ has a (completely)
positive extension Φ̃ to R2g

Cε := Φ̃(ε) is a joint POVM for the Ei ’s, where {ε} is a basis of R2g



Maximally incompatible quantum effects

Lemma ([Hru16])

For d = 2k , there exist 2k + 1 anti-commuting, self-adjoint, unitary
matrices F1, . . . ,F2k+1 ∈ Ud . Moreover, 2k is the smallest dimension
where such a (2k + 1)-tuple exists.

For k = 0, take F (0)
1 := [1]

For k ≥ 1, define F (k+1)
i = σX ⊗ F (k)

i ∀i ∈ [2k + 1] and
F (k+1)

2k+2 = σY ⊗ I2k , F (k+1)
2k+3 = σZ ⊗ I2k

These matrices satisfy, for all x ∈ Rg
+,

∥∥∑g
i=1 xiFi

∥∥
∞ = ‖x‖2, and∥∥∑g

i=1 xi F̄i ⊗ Fi
∥∥

∞ = ‖x‖1

For d large enough, the maximally incompatible g-tuple of quantum
effects in Md is given by Ei = (Fi + Id)/2



The take-home slide

Measurement compatibility in QM ⇐⇒ matrix diamond inclusion

A measurement in QM (POVM): Ai ∈ Md(C), Ai ≥ 0,
∑

i Ai = Id
Measurements (Ai), (Bj) are compatible if there exists a joint
measurement (Cij) having marginals A,B: Ai =

∑
j Cij and Bj =

∑
i Cij

Free spectrahedra: DA :=
⊔∞

n=1{X ∈ (Msa
n )g :

∑g
i=1 Xi ⊗ Ai ≤ Ind}

Matrix diamond: D♦,g =
⊔∞

n=1{X ∈ Mg
n :

∑g
i=1 εiXi ≤ In,∀ε ∈ {±1}g}

Theorem
Let E ∈ (Msa

d )g be g-tuple of selfadjoint matrices. Then:

E are quantum effects ⇐⇒ D♦,g(1) ⊆ D2E−I(1)
E are compatible quantum effects ⇐⇒ D♦,g ⊆ D2E−I

For all g , d, compatibility region Γ(g , d) = ∆(g , d) inclusion constants.

Steering inequality violation ⇐⇒ matrix cube inclusion
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