# Measurement incompatibility vs. Bell non-locality

Ion Nechita (LPT Toulouse), joint work with Faedi Loulidi PRX Quantum 3, 040325 (2022)

Journées de l'Institut Quantique Occitan, December 12th, 2022







#### **Outline**

#### Quantum incompatibility

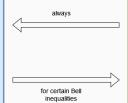
There exist quantum observables which cannot be measured simultaneously

#### 180 W. Heisenberg.

armiglichen, als es der Gleichung (I) extepricht so wire die Quantemestantik unreiglich. Diese Urgenausjesti, die derch Gleichung (I) fest-gelegt ist, schaft also erst Reum für die Geltigkeit der Danishunges, die in den quantemechanischen Vertauschungspreckstossen.

$$pq - qp = \frac{h}{3\pi i}$$

ihren prägnanten Ausdruck finden; eie ermöglicht diere Gleichung, ohne das der physikulische Sinn der Großen p und g geandert werden muste.



#### **Bell non-locality**

The quantum value of certain correlation inequalities is strictly larger than the classical value



FIG. 1. Einstein-Podolsky-Rosen-Bohm gedankenexperiment. Two-spin-j particles (or photons) in a singlet state (or similar) separate. The spin components (or linear polarizations) of 1 and 2 are measured along \(\bar{a}\) and \(\bar{b}\), Quantum mechanics predicts strong correlations between these measurements.

We relate, in a quantitative manner, the incompatibility of N quantum measurements to the largest violation of a given Bell inequality, when one party uses the N measurements.

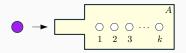
# Measurement compatibility

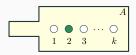
## **Quantum measurements**

- In quantum mechanics, the measurement postulate describes the outcome probabilities and the posterior state when measuring an observable X on a quantum state described by a d dimensional density operator  $\rho$ .
- Outcome probabilities are given by the Born rule:  $\mathbb{P}[\text{outcome } i] = \text{Tr } \rho P_i$ , where  $P_i$  are the eigenprojections of the observable X.
- Allowing for more general measurement scenarios (interaction with an ancilla system), one can describe measurement outcomes in the POVM (Positive-Operator-Valued Measure) framework [NC10, Wat18]:

$$\mathbb{P}[\text{ outcome } i] = \operatorname{Tr} \rho A_i,$$

where  $A_1, \ldots, A_k$  are positive semi-definite matrices s.t.  $\sum_{i=1}^k A_i = I_d$ .





A particle enters a measurement apparatus described by a POVM  $A = (A_1, ..., A_k)$ . The measurement yields outcome i = 2, with prob. Tr  $\rho A_2$ .

# Measurement (in-)compatibility

- In quantum mechanics, there exist incompatible quantum measurements, i.e. measurements that cannot be simultaneously performed on a single copy of the system.
- In the general framework of POVMs, two measurements A, B are said to be compatible [HMZ16] if there exists a third measurement  $C = (C_{ij})$  such that A and B are the marginals of C:

$$orall i = 1, \dots, k,$$
  $A_i = \sum_{j=1}^l C_{ij}$   $\forall j = 1, \dots, l,$   $B_j = \sum_{i=1}^k C_{ij}$ 

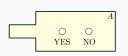
Projective measurements are compatible if and only if they commute:

$$C_{ij} = A_i B_j = \sqrt{A_i} B_j \sqrt{A_i} = \sqrt{B_j} A_i \sqrt{B_j}$$

• In many scenarios in quantum information theory, measurement incompatibility is a necessary ingredient to obtain non-classical effects.

### Norm characterization

Dichotomic POVMs  $(A_1, A_2)$  correspond to measurements with two possible outcomes: YES / NO measurements. To such a POVM, we associate a measurement operator  $(A_+, A_-) \mapsto A := A_+ - A_-$  with  $-I_d < A < I_d$ .



### Theorem ([BJN20])

A tuple  $A = (A_1, A_2, \dots, A_N) = \sum_{i=1}^N |i\rangle \otimes A_i$  of measurement operators corresponds to compatible POVMs  $\iff \|A\|_c \leq 1$ , with

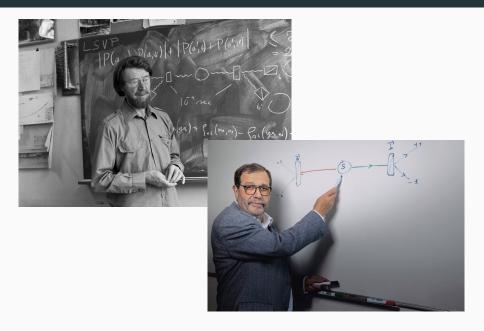
$$\|A\|_c := \inf \left\{ \left\| \sum_{j=1}^K H_j \right\|_{\infty} : A = \sum_{j=1}^K z_j \otimes H_j, \text{ s.t. } \|z_j\|_{\infty} \le 1 \text{ and } H_j \ge 0 \right\}$$

where  $z_j \in \mathbb{R}^N$  and  $H_j \in \mathcal{M}_d^{sa}(\mathbb{C})$ ;  $\|\cdot\|_c$  is called the compatibility norm.

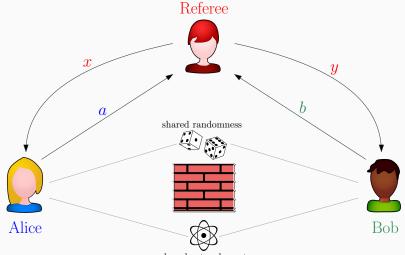
• As an example, consider noisy measurements in the Pauli bases:  $A_X = x\sigma_X$ ,  $A_Y = y\sigma_Y$ ,  $A_Z = z\sigma_Z$ . The compatibility norm reads in this case  $\|(A_X, A_Y, A_Z)\|_c = \|(x, y, z)\|_2$  [Bus86].

# **Bell inequalities**

# Aspect's experiment shows a violation of the Bell inequality



## Non-local games



shared entanglement

Game payoff: 
$$S = \sum_{x,y,a,b} V(a,b,x,y) \cdot \mathbb{P}(a,b|x,y)$$

# Bell's inequality as a non-local game

- The type of answers Alice and Bob can give depend on their resources:
  - $\bullet$  Classical strategies: with shared randomness  $\lambda\sim\mu,$  the players answer randomly given the local knowledge

$$\mathbb{P}(a,b|x,y) = \int_{\Lambda} \mathbb{P}_{A}(a|x,\lambda) \cdot \mathbb{P}_{B}(b|y,\lambda) \, \mathrm{d}\mu(\lambda)$$

 $\bullet$  Quantum strategies: with a shared quantum bipartite state  $\psi,$  the players perform local POVMs

$$\mathbb{P}(a,b|x,y) = \left\langle \psi \middle| A_x^a \otimes B_y^b \middle| \psi \right\rangle$$

- Correlation games:  $V(a, b, x, y) = M_{xy} \cdot ab$  for some matrix  $M \in \mathcal{M}_N(\mathbb{R})$ .
- The CHSH game [CHSH69]: questions  $\{x,y\} \in \{1,2\}$ , answers  $\{a,b\} \in \{-1,1\}$



$$S = \langle a_1 b_1 \rangle + \langle a_1 b_2 \rangle + \langle a_2 b_1 \rangle - \langle a_2 b_2 \rangle = \sum_{x,y=1}^{2} M_{x,y} \langle a_x, b_y \rangle$$

with 
$$\langle a_{\mathsf{x}}b_{\mathsf{y}} \rangle = \sum_{\mathsf{a},b=\pm 1} \mathsf{a}b \cdot \mathbb{P}(\mathsf{a},b|\mathsf{x},y)$$
 and  $M_{\mathsf{CHSH}} = \left[ \begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix} \right]$ .

Bell's theorem [Bel64, Tsi87]: quantum theory violates the CHSH inequality

$$\sup\{S : \mathbb{P} | \operatorname{quantum}\} = 2\sqrt{2} > 2 = \sup\{S : \mathbb{P} | \operatorname{classical}\}$$

### Norm characterization

Consider an N-input, 2-outcome game  $M \in \mathcal{M}_N(\mathbb{R})$ , and assume that

Alice's measurement operators  $A = (A_1, ..., A_N)$  are fixed.

#### Definition

For a N-tuple of measurement operators on Alice's side  $A=(A_1,\ldots,A_N)$ , the largest quantum value of the game M defines a tensor norm

$$\|A\|_{M} := \sup_{\|\psi\|=1} \sup_{\|B_y\| \le 1} \left\langle \psi \Big| \sum_{x,y=1}^{N} M_{xy} A_x \otimes B_y \Big| \psi \right\rangle = \lambda_{\max} \left[ \sum_{y=1}^{N} \left| \sum_{x=1}^{N} M_{x,y} A_x \right| \right]$$

Alice's measurements are called  $M ext{-Bell-local}$  if for any choice of Bob's observables B and for any shared state  $\psi$ , one cannot violate the Bell inequality corresponding to M:

$$\sup\{S_M : \mathbb{P} \text{ quantum}\} =: \|A\|_M \le \omega(M) := \sup\{S_M : \mathbb{P} \text{ classical}\}$$

Otherwise, they are called M-Bell-non-local.

# Main results

# Relating incompatibility to non-locality

It is known [WPGF09] that two measurements  $A_1=(A_1^+,A_1^-)$  and  $A_2=(A_2^+,A_2^-)$  violate the CHSH inequality if and only if they are incompatible.

We have introduced quantitative measures of non-locality and incompatibility: a N-tuple of dichotomic measurements  $A = (A_1, \ldots, A_N)$  is

• compatible  $\iff ||A||_c \le 1$ , with

$$||A||_c = \inf \left\{ \left\| \sum_{j=1}^K H_j \right\|_{\infty} : A = \sum_{j=1}^K z_j \otimes H_j, \text{ s.t. } ||z_j||_{\infty} \le 1 \text{ and } H_j \ge 0 \right\}$$

• not violating the Bell inequality  $M \iff ||A||_M \leq \omega(M)$ , with

$$||A||_{M} = \sup_{\|\psi\|=1} \sup_{\|B_{y}\| \leq 1} \left\langle \psi \Big| \sum_{x,y=1}^{N} M_{xy} A_{x} \otimes B_{y} \Big| \psi \right\rangle = \lambda_{\max} \left[ \sum_{y=1}^{N} \left| \sum_{x=1}^{N} M_{x,y} A_{x} \right| \right]$$

#### Theorem ([LN22])

For all invertible games M and measurements  $A = (A_1, \dots, A_N)$ , it holds

$$\omega(M)^{-1} \cdot ||A||_{M} \le ||A||_{c} \le ||A||_{M} \cdot \max \left\{ |(M^{-1})_{x,y}| \right\}_{x,y=1}^{N}$$

# Relating incompatibility to Bell non-locality

• For the CHSH game (N = 2), the two norms are equal (for any Hilbert space dimension d):

$$||A||_c = ||A||_{M_{\mathsf{CHSH}}}$$

- The above is a quantitative restatement of [WPGF09].
- How about other Bell inequalities in more general scenarios?

## Theorem ([LN22])

For all invertible non-local games  $M \in \mathcal{M}_N(\mathbb{R})$ , we have

$$\omega(M) \cdot \max \left\{ |(M^{-1})_{x,y}| \right\}_{x,y=1}^N \ge 1$$

with equality if and only if N=2 and M is a permutation of  $M_{CHSH}$ .

In other words, the CHSH Bell inequality is essentially the only one which characterizes measurement incompatibility in the scenario where Alice's measurements are fixed.

# Take home message

• Measurement compatibility (for dichotomic POVMs) can be characterized by a norm  $\|\cdot\|_c$ 

$$(A_1, \ldots, A_N)$$
 compatible  $\iff \|(A_1, \ldots, A_N)\|_c \le 1$ 

ullet For a N-input, 2-output non-local game M, the maximum value that can be obtained when Alice's measurements are fixed is given by the norm

$$\|A\|_{\mathcal{M}} = \sup_{\|\psi\|=1} \sup_{\|B_y\| \le 1} \left\langle \psi \middle| \sum_{x,y=1}^{N} M_{xy} A_x \otimes B_y \middle| \psi \right\rangle$$

- Bell inequality violations require incompatibility:  $\|A\|_M \leq \|A\|_c \cdot \omega(M)$
- The reverse inequality holds, up to a constant:  $||A||_c \le ||A||_M \cdot \max |(M^{-1})_{x,y}|$
- The CHSH Bell inequality (and its permutations) is the only one for which measurement incompatibility 

  Bell non-locality:

$$\omega(\mathit{M}) \cdot \max |(\mathit{M}^{-1})_{\mathsf{x},\mathsf{y}}| = 1 \implies \mathit{M} \cong \mathit{M}_{\mathsf{CHSH}} = egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

• Open question: measurements with ≥ 3 outcomes?



# References

|   | [BJN20]  | Physics Physique Fizika, 1(3):195, 1964.                                                                                                                                                       | [NC10]                                                                              | approach via tensor norms.  PRX Quantum, 3:040325, 2022.                                                                                                                                                  |
|---|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l |          | Andreas Bluhm, Anna Jenčová, and Ion Nechita. I<br>Incompatibility in general probabilistic theories,<br>generalized spectrahedra, and tensor norms.<br>arXiv preprint arXiv:2011.06497, 2020. |                                                                                     | Michael A Nielsen and Isaac L Chuang.  Quantum computation and quantum information.  Cambridge University Press, 2010.                                                                                    |
| [ | Bus86]   | Paul Busch. Unsharp reality and joint measurements for spin observables. Phys. Rev. D, 33:2253–2261, 1986.                                                                                     | [Tsi87]                                                                             | Boris S Tsirelson.  Problems of the theory probability distributions ix. zapiski math. inst. steklov (tomi), 142: 174–194, 1985. english translation in quantum analogues of the bell inequalities.       |
| [ | [CHSH69] | John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt.  Proposed experiment to test local hidden-variable theories.  Physical review letters, 23(15):880, 1969.                   | the case of two spatially separated domains.  J. Soviet Math, 36:557–570, 1987.     |                                                                                                                                                                                                           |
|   |          |                                                                                                                                                                                                | John Watrous.  The Theory of Quantum Information. Cambridge University Press, 2018. |                                                                                                                                                                                                           |
| [ | [HMZ16]  | Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman.<br>An invitation to quantum incompatibility.<br>Journal of Physics A: Mathematical and Theoretical,<br>49(12):123001, 2016.              | [WPGF09]                                                                            | Michael M. Wolf, David Pérez-García, and Carlos Fernández.  Measurements incompatible in quantum theory cannot be measured jointly in any other local theory.  Physical Review Letters, 103:230402, 2009. |

[LN22]

Faedi Loulidi and Ion Nechita.

Measurement incompatibility versus bell nonlocality: An

[Bel64]

John S Bell.

On the einstein podolsky rosen paradox.