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My research

My research activities are focused on two main themes:
quantum information theory
random matrices, free probability

as well as on the interactions between these topics, more precisely the study of
random quantum objects, such as quantum states and channels. Mainly, I tried
to understand the properties of (random) matrices acting on vector spaces with
a tensor product structure.

I have published 68 papers, mostly in
mathematical physics, probability theory,
and (multi)linear algebra journals

I have given 123 talks, among which 43
were invited talks at international workshops

I am supervising 1 PhD thesis and
co-supervising 2 others



Capacity of channels



Classical channels

Alice Bob

x = 0, 1, 1, 0, 0, . . . y = 0, 1, 0, 0, 0, . . .

channel

errors

Two parties, Alice and Bob want to communicate classically letters from the
alphabet {1, 2, . . . , d}
Their communication channel is noisy:

P[Bob receives j | Alice sent i ] = Mij

Classical channels ≡ Markov matrices acting on probability vectors
Positivity: for all i , j, Mij ≥ 0
Mass preservation: for all i ,

∑
j Mij = 1

Example: bit flip channel M =
[

1 − ε ε

ε 1 − ε

]



Quantum channels

Channels Deterministic Noisy

Classical f : [d ] → [d ] M Markov: Mij ≥ 0 and ∀i ,
∑

j Mij = 1

Quantum U ∈ U(d) Φ completely positive, trace pres. map

Classical channels (acting on probability vectors):
Positivity: for all i , j, Mij ≥ 0
Mass preservation: for all j,

∑
i Mij = 1.

Quantum channels: CPTP linear maps Φ : Md1 → Md2

CP - complete positivity: Φ ⊗ idk is a positive map, ∀k ≥ 1. Positivity:

X positive semi-definite =⇒ Ψ(X) positive semi-definite

TP - trace preservation: Tr ◦ Φ = Tr.
Example: depolarizing channel Φ(X ) = (1 − ε)X + ε(Tr X/d)Id



Classical capacity of channels

Classical capacity of a channel = the maximal rate at which classical
information can be reliably transmitted through the channel

Theorem ([Sha48])
The classical capacity of a classical channel M is

C(M) = max
X

I(X ; Y ),

where I is the mutual information and Y = M(X ).

Theorem ([Hol73, SW97])
The classical capacity of a quantum channel Φ is

C(Φ) = lim
r→∞

χ(Φ⊗r )
r ,

where χ is the Holevo capacity of a channel:

χ(Ψ) = max
{pi ,ρi }

H
(∑

i
piΦ(ρi)

)
−
∑

i
piH(Φ(ρi))



Importance of additivity

p-Minimal Output Entropy of a quantum channel

Hp
min(Φ) = min

ρ∈M1,+
in (C)

Hp(Φ(ρ))

= min
x∈Cin

Hp(Φ(Px ))

Is the p-MOE additive ?

Hp
min(Φ ⊗ Ψ) = Hp

min(Φ) + Hp
min(Ψ) ∀Φ,Ψ

Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of Φ.
Equivalence of additivity questions [Sho04]

1 additivity of the Holevo capacity χ

2 additivity of the minimum output entropy (MOE)
3 (strong super-) additivity of the entanglement of formation EF .

MOE is NOT additive: first shown for p > 4.79 [WH02], then for p > 1 [HW08],
and finally for p = 1 [Has09]

Difficult, mathematically challenging problem



Random quantum channels



Structure of quantum channels

Theorem [Stinespring-Kraus-Choi]
Let Φ : Md1 → Md2 be a linear map. TFAE:

1 The map Φ is completely positive and trace preserving (CPTP).
2 [Stinespring] There exist an integer s (s = d1d2 suffices) and an isometry

W : Cd1 → Cd2 ⊗ Cs such that

Φ(X ) = [idd2 ⊗ Trs ](WXW ∗).

3 [Kraus] There exist operators A1, . . . ,As ∈ Md2×d1 satisfying∑
i A∗

i Ai = Id1 such that

Φ(X ) =
s∑

i=1
AiXA∗

i .

4 [Choi] The Choi matrix CΦ is positive semidefinite, where

CΦ :=
d1∑

i,j=1
Eij ⊗ Φ(Eij) ∈ Md1 ⊗ Md2

and [idd1 ⊗ Trd2 ](CΦ) = Id1 .



Random quantum channels

There exist several natural candidates for probability distributions on the set of
quantum channels {Φ : Md1 → Md2}

1 The Lebesgue measure: the set of quantum channels is convex and compact,
having real dimension d2

1 d2
2 − d2

1 . Normalize the volume measure to obtain a
probability distribution µLebesgue

d1,d2

2 Pick the isometry W in the Stinespring decomposition at random: W is a
Haar-random isometry Cd1 → Cd2 ⊗ Cs . We obtain a probability distribution
µStinespring

d1,d2;s , where s ≥ 1 is an integer such that d1 ≤ sd2

3 Pick the Kraus operators Ai at random: Gi are i.i.d. d2 × d1 Ginibre matrices,
define Ai = GiS−1/2, with S =

∑s
i=1 G∗

i Gi . We obtain a probability
distribution µKraus

d1,d2;s , where s ≥ 1 is an integer such that d1 ≤ sd2

4 Pick the Choi matrix at random: C̃ is a Wishart matrix of parameters d1d2, s),
define C := [I ⊗ T −1/2]C̃ [I ⊗ T −1/2]∗, with T = [Tr ⊗ id]C̃ . We obtain a
probability distribution µChoi

d1,d2;s , where s ≥ 1 is any real number s ≥ d1d2, or an
integer s ≥ d1/d2



Equivalence of probability measures

Theorem ([KNP+21])
The above distributions are identical, when the respective parameters match:

µLebesgue
d1,d2

∈
{
µStinespring

d1,d2;s

}
s∈N

s≥d2/d1

=
{
µKraus

d1,d2;s

}
s∈N

s≥d2/d1

⊂
{
µChoi

d1,d2;s

}
s∈Sd1,d2

where
Sd1,d2 :=

{⌈
d1
d2

⌉
,

⌈
d1
d2

⌉
+ 1, . . . , d1d2 − 1

}
⊔ [d1d2,+∞)

The Lebesgue measure is obtained for s = d1d2.

Computationally, the random Kraus operators procedure is the cheapest;
mathematically, the random isometry procedure is the more interesting and
easier to deal with, since no normalization procedure is needed, and the
structure of Haar random isometries is well understood



Model of interest

Here, we focus on random quantum channels coming from random isometries,
with the following parameters.

in = tnk,
out = k,
anc = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

n → ∞
k is fixed
t is fixed.

In other words, we are interested in Φ : Mtnk(C) → Mk(C),

Φ(ρ) = [idk ⊗ Trn](V ρV ∗),

where V is a random isometry obtained by keeping the first tnk columns of a
nk × nk Haar random unitary.



How to get counterexamples ?

Choose Φ to be random and Ψ = Φ̄; this way, Hp
min(Ψ) = Hp

min(Φ).
Bound

Hp
min(Φ ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp

min(Φ).



MOE of a single channel



Strategy for B1

Remember: we want

Hp
min(Φ ⊗ Φ̄)≤B2 < 2B1 ≤ 2Hp

min(Φ)

We shall do more: we compute the exact limit (as n → ∞) of Hp
min(Φ)

Theorem ([BCN12, BCN16])
For all p ≥ 1, almost surely

lim
n→∞

Hmin
p (Φ) = Hp(a, b, b, . . . , b),

where a, b do not depend on p, b = (1 − a)/(k − 1) and a = φ(1/k, t) with

φ(s, t) =
{

s + t − 2st + 2
√

st(1 − s)(1 − t) if s + t < 1;
1 if s + t ≥ 1

Proof strategy: prove that the set of all eigenvalue vectors of outputs converges
to a deterministic limit, described by a norm defined using free compression



Bounds for the tensor product



Strategy for B2

Remember: we want

Hp
min(Φ ⊗ Φ̄) ≤ B2 < 2B1≤2Hp

min(Φ).

Use trivial bound Hp
min(Φ ⊗ Φ̄) ≤ Hp ([Φ ⊗ Φ̄](X12)

)
, for a particular choice of

X12 ∈ Mtnk(C) ⊗ Mtnk(C).
X12 = X1 ⊗ X2 do not yield counterexamples ⇒ choose a maximally entangled
state

X12 = Etnk =
(

1√
tnk

tnk∑
i=1

ei ⊗ ei

)(
1√
tnk

tnk∑
j=1

ej ⊗ ej

)∗

.

Bound entropies of the (random) density matrix

Zn = [Φ ⊗ Φ](Etnk) ∈ Mk(C) ⊗ Mk(C).



Main result - output eigenvalues

Theorem ([CN10])

For all k, t, almost surely as n → ∞, the eigenvalues of Zn = [Φ ⊗ Φ̄](Etnk)
converge to t + 1 − t

k2 ,
1 − t

k2 , . . . ,
1 − t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .

Previously known bound (deterministic, comes from linear algebra): for all
t, n, k, the largest eigenvalue of Zn is at least t.
Two improvements:

1 “better” largest eigenvalue,
2 knowledge of the whole spectrum.

Precise knowledge of eigenvalues ⇝ optimal estimates for entropies.
However, smaller eigenvalues are the “worst possible”.



Proof strategy for a.s. spectrum Zn

Use the method of moments
1 Convergence in moments:

ETr(Z p
n ) →

(
t + 1 − t

k2

)p
+ (k2 − 1)

(1 − t
k2

)p
;

2 Borel-Cantelli for a.s. convergence:
∞∑

n=1

E
[
(Tr(Z p

n ) − ETr(Z p
n ))2] < ∞.

We need to compute moments E [Tr(Z p1
n )q1 · · · Tr(Z ps

n )qs ].
Use the Weingarten formula to compute the unitary averages.



More than two channels



Multiple conjugate channels

Consider a tensor product of 2r channels: Ψ = Φ⊗r ⊗ Φ̄⊗r

A partial permutation β is a bijection form a subset of [r ] to another subset of
[r ]. To such a β, we associate an operator which pairs factors:

A sequence of vectors ψn ∈ (Cn)⊗2r is called well behaved if for all partial
permutations β ∈ Ŝr , one has

lim
n→∞

⟨ψn|T̃ (n)
β |ψn⟩ = aβ ∈ [0, 1]

Theorem ([FN14])
Among all sequences of well-behaved input states, the ones having a minimal
output entropy are (asymptotically) a tensor product of maximally entangled
states (where the matching Φ ↔ Φ̄ of the conjugate channels is given by an
arbitrary full permutation π ∈ Sr ).

It seems that multipartite entanglement does not help with additivity violations



Multiplicative bounds

For a channel Φ and an entropy parameter p, define the p-additivity rate of Φ

αp(Φ) := sup
{

a ∈ [0, 1] : lim inf
r→∞

1
r Hmin

p (Φ⊗r ) ≥ aHmin
p (Φ)

}
Consider the following quantities associated to a quantum channel Φ:

BC (Φ) = ∥CΦ∥ BCΓ(Φ) = ∥CΓ
Φ∥ BCcΓ(Φ) = ∥CΓ

Φc ∥

where Φc is the complementary channel of Φ and CΦ is the Choi matrix of Φ
These are multiplicative quantities: B∗(Φ1 ⊗ Φ2) = B∗(Φ1)B∗(Φ2)
They are lower bounds for the 2-Rényi minimum output entropy:

Hmin
2 (Φ) ≤ − log B∗(Φ) =⇒ αp(Φ) ≥ − log B∗

Hmin
p (Φ) ∀p ∈ [0, 2]

A similar conclusion holds for the quantities

BMΓ(Φ) = ∥MΓ
Φ∥ BI(Φ) = ∥Φ(I)∥

and for the (p = ∞)-additivity rate of Φ. Above M = VV ∗ is the projection on
the range of the Strinespring isometry V defining Φ



Additivity violations



Recall

Hp
min(Φ ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp

min(Φ)

Theorem ([CN10])

For all k, t, almost surely as n → ∞, if Zn = (Φ ⊗ Φ̄)(Etnk)

spec(Zn) →

t + 1 − t
k2 ,

1 − t
k2 , . . . ,

1 − t
k2︸ ︷︷ ︸

k2−1 times

 ∈ ∆k2 .

Theorem ([BCN12, BCN16])
For all p ≥ 1,

lim
n→∞

Hmin
p (Φ) = Hp(a, b, b, . . . , b),

where b = (1 − a)/(k − 1) and a = φ(1/k, t) with

φ(s, t) =
{

s + t − 2st + 2
√

st(1 − s)(1 − t) if s + t < 1;
1 if s + t ≥ 1.



Conclusion and further directions

Theorem ([BCN16])
Using the limit for Hmin(Φ) and the upper bound for Hmin(Φ), the lowest
dimension for which a violation of the additivity can be observed is k = 183. For
large k, violations of size 1 − ε bits can be obtained.

Going further:

1 Larger violations, smaller k? Finite n done in [CP22]

2 Other asymptotic regimes: k ∼ n (i.e. same input and output space)
3 Use Ψ ̸= Φ̄
4 For Φ ⊗ Φ̄, compute the actual limit of Hmin(Φ ⊗ Φ̄), and not just an upper

bound using the maximally entangled state Ed

5 Regularization: Φ⊗r . What is a “good” input state?
6 Additivity for symmetric channels? YES for diagonal unitary covariant

channels, p ≥ 2 (work in progress with Sang-Jun Park)
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