On spectral properties of random quantum channels

Ion Nechita (LPT Toulouse)

Habilitation à diriger des recherches defense, January 6th 2023

My research

My research activities are focused on two main themes:

- quantum information theory
- random matrices, free probability
as well as on the interactions between these topics, more precisely the study of random quantum objects, such as quantum states and channels. Mainly, I tried to understand the properties of (random) matrices acting on vector spaces with a tensor product structure.

I have published 68 papers, mostly in mathematical physics, probability theory, and (multi)linear algebra journals

I have given 123 talks, among which 43
were invited talks at international workshops
I am supervising 1 PhD thesis and co-supervising 2 others

Capacity of channels

Classical channels

- Two parties, Alice and Bob want to communicate classically letters from the alphabet $\{1,2, \ldots, d\}$
- Their communication channel is noisy:
$\mathbb{P}[$ Bob receives $j \mid$ Alice sent $i]=M_{i j}$
- Classical channels \equiv Markov matrices acting on probability vectors
- Positivity: for all $i, j, M_{i j} \geq 0$
- Mass preservation: for all $i, \sum_{j} M_{i j}=1$
- Example: bit flip channel $M=\left[\begin{array}{cc}1-\varepsilon & \varepsilon \\ \varepsilon & 1-\varepsilon\end{array}\right]$

Quantum channels

Channels	Deterministic	Noisy
Classical	$f:[d] \rightarrow[d]$	M Markov: $M_{i j} \geq 0$ and $\forall i, \sum_{j} M_{i j}=1$
Quantum	$U \in \mathcal{U}(d)$	Φ completely positive, trace pres. map

- Classical channels (acting on probability vectors):
- Positivity: for all $i, j, M_{i j} \geq 0$
- Mass preservation: for all $j, \sum_{i} M_{i j}=1$.
- Quantum channels: CPTP linear maps $\Phi: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}$
- CP - complete positivity: $\Phi \otimes \mathrm{id}_{k}$ is a positive map, $\forall k \geq 1$. Positivity: X positive semi-definite $\Longrightarrow \Psi(X)$ positive semi-definite
- TP - trace preservation: $\operatorname{Tr} \circ \Phi=\operatorname{Tr}$.
- Example: depolarizing channel $\Phi(X)=(1-\varepsilon) X+\varepsilon(\operatorname{Tr} X / d) I_{d}$

Classical capacity of channels

- Classical capacity of a channel $=$ the maximal rate at which classical information can be reliably transmitted through the channel

Theorem ([Sha48])

The classical capacity of a classical channel M is

$$
C(M)=\max _{X} I(X ; Y),
$$

where I is the mutual information and $Y=M(X)$.

Theorem ([Hol73, sw97])

The classical capacity of a quantum channel Φ is

$$
C(\Phi)=\lim _{r \rightarrow \infty} \frac{\chi\left(\phi^{\otimes r}\right)}{r},
$$

where χ is the Holevo capacity of a channel:

$$
\chi(\Psi)=\max _{\left\{p_{i}, \rho_{i}\right\}} H\left(\sum_{i} p_{i} \Phi\left(\rho_{i}\right)\right)-\sum_{i} p_{i} H\left(\Phi\left(\rho_{i}\right)\right)
$$

Importance of additivity

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{i n}^{1,+}(\mathbb{C})} H^{P}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\boldsymbol{i}}} H^{P}\left(\Phi\left(P_{x}\right)\right)
\end{aligned}
$$

- Is the p-MOE additive?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- Equivalence of additivity questions [Sho04]
(1) additivity of the Holevo capacity χ
(2) additivity of the minimum output entropy (MOE)
(3) (strong super-) additivity of the entanglement of formation E_{F}.
- MOE is NOT additive: first shown for $p>4.79$ [WH02], then for $p>1$ [HW08], and finally for $p=1$ [Has09]
- Difficult, mathematically challenging problem

Random quantum channels

Structure of quantum channels

Theorem [Stinespring-Kraus-Choi]

Let $\Phi: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}$ be a linear map. TFAE:
(1) The map Φ is completely positive and trace preserving (CPTP).
(2) [Stinespring] There exist an integer s ($s=d_{1} d_{2}$ suffices) and an isometry $W: \mathbb{C}^{d_{1}} \rightarrow \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{s}$ such that

$$
\Phi(X)=\left[\mathrm{id}_{d_{2}} \otimes \operatorname{Tr}_{s}\right]\left(W X W^{*}\right)
$$

(3) [Kraus] There exist operators $A_{1}, \ldots, A_{s} \in \mathcal{M}_{d_{2} \times d_{1}}$ satisfying $\sum_{i} A_{i}^{*} A_{i}=I_{d_{1}}$ such that

$$
\Phi(X)=\sum_{i=1}^{s} A_{i} X A_{i}^{*}
$$

(4) [Choi] The Choi matrix C_{Φ} is positive semidefinite, where

$$
C_{\Phi}:=\sum_{i, j=1}^{d_{1}} E_{i j} \otimes \Phi\left(E_{i j}\right) \in \mathcal{M}_{d_{1}} \otimes \mathcal{M}_{d_{2}}
$$

and $\left[\mathrm{id}_{d_{1}} \otimes \operatorname{Tr}_{d_{2}}\right]\left(C_{\phi}\right)=I_{d_{1}}$.

Random quantum channels

There exist several natural candidates for probability distributions on the set of quantum channels $\left\{\Phi: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}\right\}$
(1) The Lebesgue measure: the set of quantum channels is convex and compact, having real dimension $d_{1}^{2} d_{2}^{2}-d_{1}^{2}$. Normalize the volume measure to obtain a probability distribution $\mu_{d, d e}^{\text {Lebesgue }}$
(2) Pick the isometry W in the Stinespring decomposition at random: W is a Haar-random isometry $\mathbb{C}^{d_{1}} \rightarrow \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{s}$. We obtain a probability distribution $\mu_{d_{1}, d_{2} ; s}^{\text {Stinespring }}$, where $s \geq 1$ is an integer such that $d_{1} \leq s d_{2}$
(3) Pick the Kraus operators A_{i} at random: G_{i} are i.i.d. $d_{2} \times d_{1}$ Ginibre matrices, define $A_{i}=G_{i} S^{-1 / 2}$, with $S=\sum_{i=1}^{s} G_{i}^{*} G_{i}$. We obtain a probability distribution $\mu_{d_{1}, d_{2} ; s}^{K \text { Kras }}$, where $s \geq 1$ is an integer such that $d_{1} \leq s d_{2}$
(4) Pick the Choi matrix at random: \tilde{C} is a Wishart matrix of parameters $\left.d_{1} d_{2}, s\right)$, define $C:=\left[I \otimes T^{-1 / 2}\right] \tilde{C}\left[I \otimes T^{-1 / 2}\right]^{*}$, with $T=[\operatorname{Tr} \otimes \mathrm{id}] \tilde{C}$. We obtain a probability distribution $\mu_{d_{1}, d_{2} ; s}^{C h o i}$, where $s \geq 1$ is any real number $s \geq d_{1} d_{2}$, or an integer $s \geq d_{1} / d_{2}$

Equivalence of probability measures

Theorem ([KNP ${ }^{+21])}$

The above distributions are identical, when the respective parameters match:

$$
\mu_{d_{1}, d_{2}}^{\text {Lebesgue }} \in\left\{\mu_{d_{1}, d_{2} ; s}^{\text {Stinespring }}\right\}_{\substack{s \in \mathbb{N} \\ s \geq d_{2} / d_{1}}}=\left\{\mu_{d_{1}, d_{2} ; s}^{\text {Kraus }}\right\}_{\substack{s \in \mathbb{N} \\ s \geq d_{2} / d_{1}}} \subset\left\{\mu_{d_{1}, d_{2} ; s}^{\text {Choi }}\right\}_{s \in \mathcal{S}_{d_{1}, d_{2}}}
$$

where

$$
\mathcal{S}_{d_{1}, d_{2}}:=\left\{\left\lceil\frac{d_{1}}{d_{2}}\right\rceil,\left\lceil\frac{d_{1}}{d_{2}}\right\rceil+1, \ldots, d_{1} d_{2}-1\right\} \sqcup\left[d_{1} d_{2},+\infty\right)
$$

The Lebesgue measure is obtained for $s=d_{1} d_{2}$.

Computationally, the random Kraus operators procedure is the cheapest; mathematically, the random isometry procedure is the more interesting and easier to deal with, since no normalization procedure is needed, and the structure of Haar random isometries is well understood

Model of interest

Here, we focus on random quantum channels coming from random isometries, with the following parameters.

- in = tnk,
- out $=k$,
- anc $=n$, where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$
- k is fixed
- t is fixed.

In other words, we are interested in $\Phi: \mathcal{M}_{\text {tnk }}(\mathbb{C}) \rightarrow \mathcal{M}_{k}(\mathbb{C})$,

$$
\Phi(\rho)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(V \rho V^{*}\right),
$$

where V is a random isometry obtained by keeping the first tnk columns of a $n k \times n k$ Haar random unitary.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$; this way, $H_{\min }^{p}(\Psi)=H_{\min }^{p}(\Phi)$.
- Bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi) .
$$

MOE of a single channel

Strategy for B_{1}

- Remember: we want

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi)
$$

- We shall do more: we compute the exact limit (as $n \rightarrow \infty$) of $H_{\text {min }}^{p}(\Phi)$

Theorem ([BCN12, BCN16])

For all $p \geq 1$, almost surely

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=H_{p}(a, b, b, \ldots, b)
$$

where a, b do not depend on $p, b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

- Proof strategy: prove that the set of all eigenvalue vectors of outputs converges to a deterministic limit, described by a norm defined using free compression

Bounds for the tensor product

Strategy for B_{2}

- Remember: we want

$$
H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\text {min }}^{p}(\Phi) .
$$

- Use trivial bound $H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi}) \leq H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right)$, for a particular choice of $X_{12} \in \mathcal{M}_{\text {tnk }}(\mathbb{C}) \otimes \mathcal{M}_{\text {tnk }}(\mathbb{C})$.
- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state

$$
X_{12}=E_{t n k}=\left(\frac{1}{\sqrt{t n k}} \sum_{i=1}^{t n k} e_{i} \otimes e_{i}\right)\left(\frac{1}{\sqrt{t n k}} \sum_{j=1}^{t n k} e_{j} \otimes e_{j}\right)^{*} .
$$

- Bound entropies of the (random) density matrix

$$
Z_{n}=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right) \in \mathcal{M}_{k}(\mathbb{C}) \otimes \mathcal{M}_{k}(\mathbb{C})
$$

Main result - output eigenvalues

Theorem ([CN10])

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z_{n}=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}} .
$$

- Previously known bound (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z_{n} is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

Proof strategy for a.s. spectrum Z_{n}

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z_{n}^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z_{n}^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z_{n}^{p}\right)\right)^{2}\right]<\infty
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z_{n}^{p_{1}}\right)^{q_{1}} \cdots \operatorname{Tr}\left(Z_{n}^{p_{s}}\right)^{q_{s}}\right]$.
- Use the Weingarten formula to compute the unitary averages.

More than two channels

Multiple conjugate channels

- Consider a tensor product of $2 r$ channels: $\Psi=\Phi^{\otimes r} \otimes \bar{\Phi} \otimes r$
- A partial permutation β is a bijection form a subset of $[r]$ to another subset of [r]. To such a β, we associate an operator which pairs factors:

- A sequence of vectors $\psi_{n} \in\left(\mathbb{C}^{n}\right)^{\otimes 2 r}$ is called well behaved if for all partial permutations $\beta \in \hat{\mathcal{S}}_{r}$, one has

$$
\lim _{n \rightarrow \infty}\left\langle\psi_{n}\right| \tilde{T}_{\beta}^{(n)}\left|\psi_{n}\right\rangle=a_{\beta} \in[0,1]
$$

Theorem ([FN14])

Among all sequences of well-behaved input states, the ones having a minimal output entropy are (asymptotically) a tensor product of maximally entangled states (where the matching $\Phi \leftrightarrow \bar{\Phi}$ of the conjugate channels is given by an arbitrary full permutation $\pi \in \mathcal{S}_{r}$).

- It seems that multipartite entanglement does not help with additivity violations

Multiplicative bounds

- For a channel Φ and an entropy parameter p, define the p-additivity rate of Φ

$$
\alpha_{p}(\Phi):=\sup \left\{a \in[0,1]: \liminf _{r \rightarrow \infty} \frac{1}{r} H_{p}^{\min }\left(\Phi^{\otimes r}\right) \geq a H_{p}^{\min }(\Phi)\right\}
$$

- Consider the following quantities associated to a quantum channel Φ :

$$
B_{C}(\Phi)=\left\|C_{\Phi}\right\| \quad B_{C\ulcorner }(\Phi)=\left\|C_{\Phi}^{\Gamma}\right\| \quad B_{C \subset\ulcorner }(\Phi)=\left\|C_{\Phi}^{\Gamma}\right\|
$$

where Φ^{c} is the complementary channel of Φ and C_{Φ} is the Choi matrix of Φ

- These are multiplicative quantities: $B_{*}\left(\Phi_{1} \otimes \Phi_{2}\right)=B_{*}\left(\Phi_{1}\right) B_{*}\left(\Phi_{2}\right)$
- They are lower bounds for the 2-Rényi minimum output entropy:

$$
H_{2}^{\min }(\Phi) \leq-\log B_{*}(\Phi) \Longrightarrow \alpha_{p}(\Phi) \geq \frac{-\log B_{*}}{H_{p}^{\min }(\Phi)} \quad \forall p \in[0,2]
$$

- A similar conclusion holds for the quantities

$$
B_{M \Gamma}(\Phi)=\left\|M_{\Phi}^{\ulcorner }\right\| \quad B_{l}(\Phi)=\|\Phi(I)\|
$$

and for the $(p=\infty)$-additivity rate of Φ. Above $M=V V^{*}$ is the projection on the range of the Strinespring isometry V defining Φ

Additivity violations

Recall

$$
H_{\min }^{\rho}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{\rho}(\Phi)
$$

Theorem ([CN10])

For all k, t, almost surely as $n \rightarrow \infty$, if $Z_{n}=(\Phi \otimes \bar{\Phi})\left(E_{\text {tnk }}\right)$

$$
\operatorname{spec}\left(Z_{n}\right) \rightarrow(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}}
$$

Theorem ([BCN12, BCN16])

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=H_{p}(a, b, b, \ldots, b)
$$

where $b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Conclusion and further directions

Theorem ([BCN16])

Using the limit for $H^{\min }(\Phi)$ and the upper bound for $H^{\min }(\Phi)$, the lowest dimension for which a violation of the additivity can be observed is $k=183$. For large k, violations of size $1-\varepsilon$ bits can be obtained.

Going further:

(1) Larger violations, smaller k ? Finite n done in [CP22]
(2) Other asymptotic regimes: $k \sim n$ (i.e. same input and output space)
(3) Use $\psi \neq \bar{\Phi}$
(4) For $\Phi \otimes \bar{\Phi}$, compute the actual limit of $H^{\text {min }}(\Phi \otimes \bar{\Phi})$, and not just an upper bound using the maximally entangled state E_{d}
(5) Regularization: $\Phi^{\otimes r}$. What is a "good" input state?
(6 Additivity for symmetric channels? YES for diagonal unitary covariant channels, $p \geq 2$ (work in progress with Sang-Jun Park)

References

[BCN12] Serban Belinschi, Benoît Collins, and Ion Nechita. Eigenvectors and eigenvalues in a random subspace of a tensor product.
Inventiones mathematicae, 190(3):647-697, 2012.
[BCN16] Serban T Belinschi, Benoit Collins, and Ion Nechita.
Almost one bit violation for the additivity of the minimum output entropy.
Communications in Mathematical Physics, 341(3):885-909, 2016.
[CN10] Benoît Collins and Ion Nechita.
Random quantum channels I: graphical calculus and the Bell state phenomenon.
Communications in Mathematical Physics, 297(2):345-370, 2010.
[CP22] Benoît Collins and Félix Parraud.
Concentration estimates for random subspaces of a tensor product and application to quantum information theory.
Journal of Mathematical Physics, 63(10):102202, 2022.
[FN14] Motohisa Fukuda and Ion Nechita.
Asymptotically well-behaved input states do not violate additivity for conjugate pairs of random quantum channels.
Communications in Mathematical Physics,
328(3):995-1021, 2014.
[Has09] Matthew B Hastings.
Superadditivity of communication capacity using entangled inputs.
Nature Physics, 5(4):255-257, 2009.
[Hol73] Alexander S Holevo.

Statistical decision theory for quantum systems.

Journal of multivariate analysis, 3(4):337-394, 1973.
[HW08] Patrick Hayden and Andreas Winter.
Counterexamples to the maximal p-norm multiplicativity conjecture for all $p>1$.
Communications in mathematical physics, 284(1):263-280, 2008.
[KNP ${ }^{+}$21] Ryszard Kukulski, Ion Nechita, Łukasz Pawela, Zbigniew Puchała, and Karol Życzkowski.
Generating random quantum channels.
Journal of Mathematical Physics, 62(6):062201, 2021.
[Sha48] Claude E. Shannon.
A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379-423, 1948.
[Sho04] Peter W Shor.
Equivalence of additivity questions in quantum information theory.
Communications in Mathematical Physics, 246(3):453-472, 2004.
[SW97] Benjamin Schumacher and Michael D Westmoreland. Sending classical information via noisy quantum channels. Physical Review A, 56(1):131, 1997.
[WH02] Reinhard F Werner and Alexander S Holevo.
Counterexample to an additivity conjecture for output purity of quantum channels.
Journal of Mathematical Physics, 43(9):4353-4357, 2002.

