Matrix convex sets with polytope base, quantum Latin squares, and compatibility

Ion Nechita (LPT Toulouse)
joint work with Andreas Bluhm (Grenoble) and Simon Schmidt (Copenhagen)

MFO workshop New Directions in Real Algebraic Geometry, March 22nd 2023

Outline

We show that some fundamental problems in quantum information theory are related to matrix convex sets built on polytopes. The amount by which the maximal matrix convex set has to be shrunk to fit inside the minimal one has an operational meaning.

Matrix convex sets

Matrix convex sets

We consider free sets:

$$
\mathcal{F}=\bigsqcup_{n \geq 1} \mathcal{F}_{n}
$$

where $\mathcal{F}_{n} \subseteq\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}$.
The free set \mathcal{F} is matrix convex [DDOSS17] if it is closed under direct sums and unital completely positive maps:

- $\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{F}_{m},\left(B_{1}, \ldots, B_{g}\right) \in \mathcal{F}_{n} \Longrightarrow\left(A_{1} \oplus B_{1}, \ldots, A_{g} \oplus B_{g}\right) \in \mathcal{F}_{m+n}$.
- $\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{F}_{m}, \Phi: \mathcal{M}_{m} \rightarrow \mathcal{M}_{n} \cup C P \Longrightarrow\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{g}\right)\right) \in \mathcal{F}_{n}$

UCP maps $\Phi: \mathcal{M}_{m} \rightarrow \mathcal{M}_{n}$ are maps such that $\Phi \otimes \operatorname{id}_{k}$ is positive for all $k \geq 1$ and $\Phi\left(I_{m}\right)=I_{n}$.

Alternatively, $\Phi(X)=\sum_{i} K_{i}^{*} X K_{i}$ such that $\sum_{i} K_{i}^{*} K_{i}=I_{n}, K_{i} \in \mathcal{M}_{m, n}$, see [Wat18].

Minimal and maximal matrix convex sets

- Unless \mathcal{C} is a simplex, there are arbitrarily many different matrix convex sets with the same $\mathcal{F}_{1}=\mathcal{C}$. However, there is a largest and a smallest such set:
- For a closed convex set \mathcal{C},

$$
\mathcal{W}_{n}^{\max }(\mathcal{C}):=\left\{X \in\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}: \sum_{i=1}^{g} c_{i} X_{i} \leq \alpha / \forall(\alpha, c) \text { supp. hyperplanes for } \mathcal{C}\right\}
$$

- For a closed convex set \mathcal{C},

$$
\mathcal{W}_{n}^{\min }(\mathcal{C}):=\left\{\sum_{j} X=z_{j} \otimes Q_{j} \in\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}: z_{j} \in \mathcal{C}, Q_{j} \geq 0 \forall j, \sum_{j} Q_{j}=I_{n}\right\}
$$

- Observe $\mathcal{W}_{1}^{\max }(\mathcal{C})=\mathcal{C}=\mathcal{W}_{1}^{\min }(\mathcal{C}) . \mathcal{W}^{\max }(\mathcal{C})$ quantizes hyperplanes, $\mathcal{W}^{\min }(\mathcal{C})$ quantizes extreme points [FNT17].

Definition

Let $d, g \in \mathbb{N}$ and $\mathcal{C} \subset \mathbb{R}^{g}$ closed convex. The inclusion set of \mathcal{C} is defined as

$$
\Delta_{\mathcal{C}}(d):=\left\{s \in[0,1]^{g}: s \cdot \mathcal{W}_{d}^{\max }(\mathcal{C}) \subseteq \mathcal{W}_{d}^{\min }(\mathcal{C})\right\}
$$

Measurement compatibility

Quantum states and measurements

- Motivation: Classical state \rightsquigarrow probability distributions: $p \in \mathbb{R}^{d}, p \geq 0$, $\sum_{i} p_{i}=1$.
- Quantum states \rightsquigarrow density matrices: $\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$.
- A measurement apparatus is a device which takes in a quantum state and yields a classical measurement result, i.e. a label $i \in\{1, \ldots, k\}$.
- Outcome probabilities are given by the Born rule.
- Measurements: Tuples of matrices $\left(E_{1}, \ldots, E_{k}\right)$ such that $\left(\operatorname{Tr}\left[\rho E_{1}\right], \ldots, \operatorname{Tr}\left[\rho E_{k}\right]\right)$ is a probability distribution for all states ρ.
- $\operatorname{Tr}\left[\rho E_{i}\right] \in \mathbb{R} \rightsquigarrow E_{i}=E_{i}^{*}$.
- $\operatorname{Tr}\left[\rho E_{i}\right] \geq 0 \rightsquigarrow E_{i} \geq 0$.
- $\sum_{i} \operatorname{Tr}\left[\rho E_{i}\right]=1 \rightsquigarrow \sum_{i} E_{i}=I_{d}$.
- Tuples of PSD matrices summing to identity are called positive operator-valued measures (POVMs).
- Examples:
- basis measurements $\left(\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)_{i \in[d]}$;
- trivial measurements $\left(p_{j} / I_{d}\right)_{j[k]}$ for a probability vector p.

Quantum measurements: Compatibility

- Quantum measurements \rightsquigarrow give the probabilities of the classical outcomes when a quantum state enters a measurement apparatus. Mathematically, measurements are modeled by POVMs.

Definition

Two POVMs, $A=\left(A_{1}, \ldots, A_{k}\right)$ and $B=\left(B_{1}, \ldots, B_{l}\right)$, are called compatible if there exists a third POVM $C=\left(C_{i j}\right)_{i \in[k], j \in[\}$ such that

$$
\forall i \in[k], \quad A_{i}=\sum_{j=1}^{\prime} C_{i j} \quad \text { and } \quad \forall j \in[\Lambda], \quad B_{j}=\sum_{i=1}^{k} C_{i j}
$$

The definition generalizes to g-tuples of POVMs $A^{(1)}, \ldots, A^{(g)}$, having respectively $k_{1}, \ldots k_{g}$ outcomes, where the joint POVM C has outcome set $\left[k_{1}\right] \times \cdots \times\left[k_{g}\right]$.

- Other way to say that: jointly measurable [HMZ16].

What does it mean?

- Compatible measurements can be simulated by a single joint measurement, by classically post-processing its outputs $A_{i}^{(j)}=\sum_{\lambda} p_{j}(i \mid \lambda) C_{\lambda}$.
- Examples:
(1) Trivial POVMs $A=\left(p_{i} l_{d}\right)$ and $B=\left(q_{j} l_{d}\right)$ are compatible.
(2) Commuting POVMs $\left[A_{i}, B_{j}\right]=0$ are compatible.
(3) If the POVM A is projective, then A and B are compatible if and only if they commute.

Noisy POVMs

- POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.
- Example: dichotomic POVMs and white noise, $s \in[0,1]$:

$$
(E, I-E) \mapsto s(E, I-E)+(1-s)\left(\frac{I}{2}, \frac{I}{2}\right) \quad \text { or } \quad E \mapsto s E+(1-s) \frac{l}{2} .
$$

- Taking $s=1 / 2$ suffices to render any pair of dichotomic POVMs compatible \rightsquigarrow define $C_{i j}:=\left(E_{i}+F_{j}\right) / 4$.
- From now on, we focus on dichotomic (YES/NO) POVMs.

Definition ([BN18])

The compatibility region for g measurements on \mathbb{C}^{d} is the set

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C}),\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

Compatibility region

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C}),\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

- The set $\Gamma(g, d)$ is convex.
- For all $i \in[g], e_{i} \in \Gamma(g, d)$: every measurement is compatible with $g-1$ trivial measurements.
- For $d \geq 2,(1,1, \ldots, 1) \notin \Gamma(g, d)$: there exist incompatible measurements.
- For all $d \geq 2, \Gamma(2, d)$ is a quarter-circle.

Generally speaking, the set $\Gamma(g, d)$ tells us how robust (to noise) is the incompatibility of g dichotomic measurements on \mathbb{C}^{d}.

Measurement compatibility and matrix convex sets

Measurement compatibility revisited

From now on, we concentrate on measurements with two outcomes and identify $E^{(i)}=\left\{E_{i}, I-E_{i}\right\}$ with E_{i}.

Theorem ([BN18])

Let E_{1}, \ldots, E_{g} be arbitrary self-adjoint operators. Define

$$
A=\sum_{j=1}^{g} e_{j} \otimes\left(2 E_{j}-l\right)
$$

Then, $A \in \mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ if and only if $\left\{E_{j}\right\}_{j \in[g]}$ is a collection of POVMs.
Moreover, $A \in \mathcal{W}_{d}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ if and only if $\left\{E_{j}\right\}_{j \in[g]}$ is a collection of compatible POVMs.

Proof sketch

- $\mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ is given in terms of hyperplanes. Have to verify

$$
-I \leq A_{i}=2 E_{i}-I \leq I \Longrightarrow 0 \leq E_{i} \leq I .
$$

- Reminder:

$$
\mathcal{W}_{n}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right):=\left\{X=\sum_{j} z_{j} \otimes Q_{j} \in\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}: z_{j} \in \mathcal{C} \forall j, Q \text { POVM }\right\}
$$

- Going to extreme points:

$$
2 E_{j}-I=\sum_{\varepsilon \in\{ \pm 1\}} \varepsilon(j) Q_{\varepsilon}
$$

- Using $\sum_{\varepsilon} Q_{\varepsilon}=I$:

$$
E_{j}=\sum_{\varepsilon \in\{ \pm 1\}: \varepsilon(j)=1} Q_{\varepsilon} .
$$

- $\left\{Q_{\varepsilon}\right\}_{\varepsilon}$ is a joint POVM.

Inclusion sets and compatibility regions

Let Δ_{\square} be the inclusion set of the hypercube:

$$
\Delta_{\square}(g, d):=\left\{s \in[0,1]^{g}: s \cdot \mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right) \subseteq \mathcal{W}_{d}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)\right\} .
$$

Theorem ([BN18])

Let $g, d \in \mathbb{N}$. Let $s \in[0,1]^{g}$. Then, $\left\{s_{i} E_{i}+\left(1-s_{i}\right) / / 2\right\}_{i \in[g]}$ is a collection of compatible POVMs for all POVMs $\left\{E_{i}\right\}_{i \in[g]}$, if and only if $s \in \Delta_{\square}(g, d)$. An equivalent way to phrase this is $\Gamma(g, d)=\Delta_{\square}(g, d)$.

- This follows from the computation

$$
A_{i}^{\prime}=2\left(s_{i} E_{i}+\left(1-s_{i}\right) I / 2\right)-I=s_{i}\left(2 E_{i}-I\right)=s_{i} A_{i} .
$$

- So adding noise means scaling the tensor A and hence $s \cdot \mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ is the set of noisy measurements.
- Thus, $s \cdot A \in \mathcal{W}_{d}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ means the noisy measurements are compatible.

Polytope compatibility

work in progress, "soon" on the arXive

Polytope compatibility

Definition

Let \mathcal{P} be a polytope in \mathbb{R}^{g} such that $0 \in \operatorname{int} \mathcal{P}$. Let

$$
A=\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{M}_{d}^{\mathrm{sa}}(\mathbb{C})^{g} \cong \mathbb{R}^{g} \otimes \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})
$$

a g-tuple of Hermitian matrices. Then, A are \mathcal{P}-operators if and only if $A \in \mathcal{W}_{d}^{\max }(\mathcal{P})$. Moreover, A are \mathcal{P}-compatible if and only if $A \in \mathcal{W}_{d}^{\min }(\mathcal{P})$.

Motivation:

- A are $\mathcal{B}\left(\ell_{\infty}^{g}\right)$-operators if and only if $\frac{1}{2}\left(A_{i}+I\right)$ are dichotomic POVMs.
- A are $\mathcal{B}\left(\ell_{\infty}^{g}\right)$-compatible if and only if $\frac{1}{2}\left(A_{i}+I\right)$ are compatible dichotomic POVMs.

Interlude: General Probabilistic Theories

- A GPT [Lam18] is a triple $\left(V, V^{+}, \mathbb{1}\right)$, where V is a vector space, $V^{+} \subseteq V$ is a cone, and $\mathbb{1}$ is a linear form on $V_{;} A=V^{*}, A^{+}=\left(V^{+}\right)^{*}$, and $\mathbb{1} \in A^{+}$
- The set of states $K:=V^{+} \cap \mathbb{1}^{-1}(\{1\})$

Equivalent formulation

Theorem

Let $d, g, k \in \mathbb{N}$ and let \mathcal{P} be a polytope with k extremal points $v_{1}, \ldots, v_{k} \in \mathbb{R}^{g}$ such that $0 \in \operatorname{int} \mathcal{P}$. Let $A=\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})^{g}$ be a g-tuple of Hermitian matrices. Let us consider the map $\mathcal{A}: \mathcal{M}_{d}^{\mathrm{sa}} \rightarrow \mathbb{R}^{g}$,

$$
\mathcal{A}(X)=\left(\operatorname{Tr}\left[A_{1} X\right], \ldots, \operatorname{Tr}\left[A_{g} X\right]\right)
$$

Then,

1. A are \mathcal{P}-operators if and only if \mathcal{A} is a channel between $\left(\mathcal{M}_{d}^{\text {sa }}, \mathrm{PSD}_{d}, \operatorname{Tr}\right)$ and $\left(V(\mathcal{P}), V(\mathcal{P})^{+}, \mathbb{1}_{\mathcal{P}}\right)$.
2. A are \mathcal{P}-compatible if and only if in addition \mathcal{A} factors through the k-simplex Δ_{k}.

Interpretation: \mathcal{P} defines some kind of allowed post-processing. In the case of $\mathcal{B}\left(\ell_{\infty}^{g}\right)$: Classical post-processing.

Magic squares

A magic square is a collection of positive operators $A_{i j}, i, j \in[M]$, such that

The magic square is said to be semiclassical [DICDN20] if

$$
A=\sum_{i, j \in[M]} E_{i j} \otimes A_{i j}=\sum_{\pi \in \mathcal{S}_{N}} P_{\pi} \otimes Q_{\pi},
$$

where P_{π} is the permutation matrix associated to π and $\left\{Q_{\pi}\right\}_{\pi}$ is a POVM.

Birkhoff polytope compatibility

Definition

For a given $N \geq 2$, the Birkhoff body \mathcal{B}_{N} is defined as the set of $(N-1) \times(N-1)$ truncations of $N \times N$ bistochastic matrices, shifted by J / N :

$$
\mathcal{B}_{N}=\left\{A^{(N-1)}-J_{N-1} / N: A \in \mathcal{M}_{N}(\mathbb{R}) \text { bistochastic }\right\} \subset \mathbb{R}^{(N-1)^{2}}
$$

To a $(N-1)^{2}$-tuple of selfadjoint matrices A, we associate the $N \times N$ block-bistochastic matrix $\tilde{A} \in \mathcal{M}_{N}\left(\mathcal{M}_{d}(\mathbb{C})\right)$ obtained by filling in the last row and column of the matrix $I / N+A_{i j}$ to have sums equal to I_{d}.

Theorem

Consider a $(N-1)^{2}$-tuple of selfadjoint matrices $A \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})^{(N-1)^{2}}$ and the corresponding matrix $\tilde{A} \in \mathcal{M}_{N}\left(\mathcal{M}_{d}(\mathbb{C})\right)$. Then, the matrix \tilde{A} is a magic square if and only if $A-I / N$ are \mathcal{B}_{N}-operators, i.e. $A-I / N \in \mathcal{W}_{d}^{\max }\left(\mathcal{B}_{N}\right)$. Moreover, the matrix \tilde{A} is a semiclassical magic square if and only if $A-I / N$ are \mathcal{B}_{N}-compatible, i.e. $A-I / N \in \mathcal{W}_{d}^{\min }\left(\mathcal{B}_{N}\right)$.

Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

$\frac{1}{2}\|0\rangle\langle 0\|$	$\frac{1}{2}\|1\rangle\langle 1\|$	0	$\frac{1}{2} I_{2}$
$\frac{1}{2}\|1\rangle\langle 1\|$	$\frac{1}{2}\|0\rangle\langle 0\|$	$\frac{1}{2} I_{2}$	0
0	$\frac{1}{2} I_{2}$	$\frac{1}{2}\|+\rangle\langle+\|$	$\frac{1}{2}\|-\rangle\langle-\|$
$\frac{1}{2} I_{2}$	0	$\frac{1}{2}\|-\rangle\langle-\|$	$\frac{1}{2}\|+\rangle\langle+\|$

These measurements are compatible, but they do not form a semiclassical magic square.

Reason: \mathcal{B}_{N}-compatibility restricts the post-processing to $p_{i}(j \mid \lambda)=p_{j}(i \mid \lambda)$. This enforces special structure [GB19] in the joint POVM.

Measurement compatibility with shared effects

Can we generalize the magic square example?
$\mathcal{P}=(-1 / 3,-1 / 3,-1 / 3)+\operatorname{conv}\{((1,0,0),(0,0,0),(0,0,1),(0,1,0),(0,1,1)\}$.

Consider $(A, B, C) \in\left(\mathcal{M}_{d}(\mathbb{C})^{s a}\right)^{3}$. Then, we have $(A, B, C)+1 / 3(I, I, I) \in \mathcal{W}_{d}^{\max }(\mathcal{P})$ if and only if both $\left(A, B, I_{d}-A-B\right)$ and $\left(A, C, I_{d}-A-C\right)$ are POVMs.

Measurement compatibility with shared effects, continued

When does $(A, B, C)+1 / 3(I, I, I) \in \mathcal{W}_{d}^{\min }(\mathcal{P})$ hold? Equivalent to the existence of a joint measurement such that

Q_{1}	0	0
0	Q_{5}	Q_{4}
0	Q_{3}	Q_{2}
$=A$	$=B$	
$=A$	$=I_{d}-A-B$	
	$=C$	

Not all compatible POVMs with common first effect are \mathcal{P}-compatible, check

$$
\left(\frac{1}{2} I_{2}, \frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|\right) \quad \text { and } \quad\left(\frac{1}{2} I_{2}, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right) .
$$

Indeed, the unique joint measurement for the POVMs above is

0	$\frac{1}{2}\|+\rangle\langle+\|$	$\frac{1}{2}\|-\rangle\langle-\|$
$\frac{1}{2}\|0\rangle\langle 0\|$	0	0
$\frac{1}{2}\|1\rangle\langle 1\|$	0	0

Summary

- Measurement incompatibility can be phrased as inclusion of matrix convex sets. Base set: cube.
- Noise robustness corresponds to inclusion constants.
- Generalization: \mathcal{P}-operators and \mathcal{P}-compatible operators.
- Examples include magic squares and compatibility with shared elements (under restricted post-processing).

Can we find more tasks in quantum information theory which can be formulated as \mathcal{P}-compatibility?

Compute inclusion constants/sets for general polytopes. These have operational interpretation for the (restricted) compatibility of POVMs with shared elements.

References

[BN18] Andreas Bluhm and Ion Nechita.
Joint measurability of quantum effects and the matrix diamond.
Journal of Mathematical Physics, 59(11):112202, 2018.
[DDOSS17] Kenneth R. Davidson, Adam Dor-On, Orr Moshe Shalit, and Baruch Solel.
Dilations, inclusions of matrix convex sets, and completely positive maps.
International Mathematics Research Notices, 2017(13):4069-4130, 2017.
[DICDN20] Gemma De las Cuevas, Tom Drescher, and Tim Netzer. Quantum magic squares: Dilations and their limitations. Journal of Mathematical Physics, 61(11):111704, 2020.
[FNT17] Tobias Fritz, Tim Netzer, and Andreas Thom. Spectrahedral containment and operator systems with finite-dimensional realization.

SIAM Journal on Applied Algebra and Geometry, 1(1):556-574, 2017.
[GB19] Leonardo Guerini and Alexandre Baraviera.
Joint measurability meets Birkhoff-von Neumann's theorem.
arXiv preprint arXiv:1809.07366v3, 2019.
[HMZ16] Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman. An invitation to quantum incompatibility.
Journal of Physics A: Mathematical and Theoretical, 49(12):123001, 2016.
[Lam18] Ludovico Lami.
Non-classical correlations in quantum mechanics and beyond.
PhD thesis. arXiv preprint arXiv:1803.02902, 2018.
[Wat18] John Watrous.
The Theory of Quantum Information.
Cambridge University Press, 2018.

