Diagonal Unitary and Orthogonal Symmetries in Quantum Theory

joint work with Satvik Singh (Cambridge UK)

A graphical calculus for integration over random diagonal unitary matrices - LAA 613 (2021) [arXiv:2010.07898] Diagonal unitary and orthogonal symmetries in quantum theory - Quantum 5, 519 (2021) [arXiv:2112.11123] The PPT² conjecture holds for all Choi-type maps - Annales Henri Poincaré 23 (2022) [arxiv:2011.03809]

Ion Nechita (CNRS, LPT Toulouse)

Plan of the talk

- 1. Unitary symmetry in quantum information
- 2. Diagonal unitary / orthogonal symmetry
- 3. Positive semidefinite bipartite operators

Unitary symmetry in quantum information

Symmetry in quantum theory

• Quantum states are modeled mathematically by density matrices

$$\{ \rho \in \mathcal{M}_d(\mathbb{C}) : \rho \ge 0 \text{ and } \operatorname{Tr} \rho = 1 \}$$

Unitary operators encode time evolution

$$\rho \mapsto U\rho U^*$$
, for $U \in \mathcal{U}_d$

• We would like to consider quantum states which are left invariant by a certain class of unitary operators

Example. If $UXU^* = X$ for all $U \in \mathcal{U}_d$, then X must be a scalar matrix, i.e. $X = cI_d$ for some constant $c \in \mathbb{C}$. For density matrices, c = 1/d.

Bipartite operators

- Quantum entanglement is of the key features of quantum theory. It appears when one considers two quantum systems.
- In this case, the set of quantum states is given by bipartite matrices:

$$\{\rho_{AB} \in \mathcal{M}_d \otimes \mathcal{M}_d \cong \mathcal{M}_{d^2} : \rho \ge 0 \text{ and } \operatorname{Tr} \rho = 1\}$$

Two examples

• Separable states are bipartite quantum states which can be written as convex combinations of product states $\rho_A \otimes \rho_B$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

• Entangled states are the non-separable states. The most important example is the maximally entangled state

$$\omega = \frac{1}{d} \sum_{i,j=1}^{d} |ii\rangle\langle jj|$$

(Full) Unitary symmetry in the bipartite case

Theorem. Let $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ be a bipartite operator. Then

$$\forall U \in \mathcal{U}_d, (U \otimes U)X(U \otimes U)^* = X \iff X = \alpha I_{d^2} + \beta F \text{ for } \alpha, \beta \in \mathbb{C}$$

where the (unitary) flip operator is defined by $Fx \otimes y = y \otimes x$.

Isotropic quantum states

Theorem. Let $\rho \in \mathcal{M}_d \otimes \mathcal{M}_d$ be a bipartite density matrix. Then

$$\forall U \in \mathcal{U}_d, (U \otimes \bar{U}) \rho U^* \otimes U^\top = \rho \iff \rho = (1-p)\frac{I}{d^2} + p\omega \text{ for } p \in [-1/(d^2-1), 1]$$

i.e. ρ must be a convex combination of the maximally mixed state and the maximally entangled state. Such quantum states are called isotropic.

$$\frac{1}{\sqrt{2}} = \frac{1-p}{d^2} = \frac{1}{3}$$
(=> $\int_{0}^{2} = \frac{1-p}{d^2} = \frac{1}{3}$) (\text{9 States})

Diagonal unitary / orthogonal symmetry

The diagonal subgroup

• Since requiring the full unitary symmetry yields matrices (resp. quantum states) with only 2 parameters, we shall consider the much smaller subgroups

$$\mathcal{D}\mathcal{U}_d := \{\operatorname{diag}(e^{i\theta_1}, ..., e^{i\theta_d}) : \theta \in \mathbb{R}^d\}$$

$$\mathcal{D}\mathcal{O}_d := \{\operatorname{diag}(\epsilon_1, ..., \epsilon_d) : \epsilon \in \{\pm 1\}^d\}$$

$$\mathcal{U}_{ij} = \delta_{ij} \cdot \mu_{i}$$

• In the case of a single tensor factor, we have

$$\forall U \in \mathcal{D}\mathcal{U}_d$$
, $UXU^* = X \iff X = \text{diag}(X)$

Diagonally symmetric bipartite matrices

Definition. A bipartite matrix $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ is called:

• LDUI (local diagonal unitary invariant) if

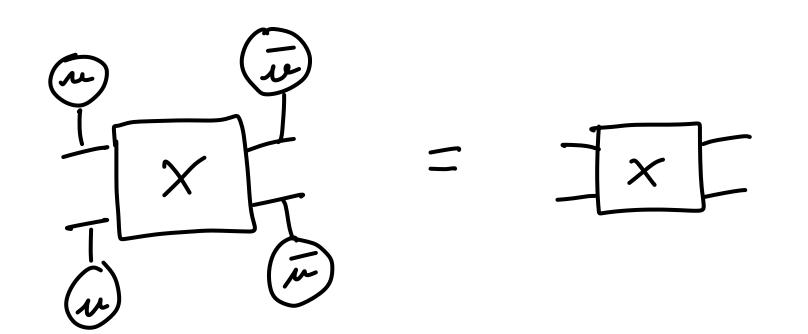
$$\forall U \in \mathcal{D}\mathcal{U}_d, \quad (U \otimes U)X(U^* \otimes U^*) = X$$

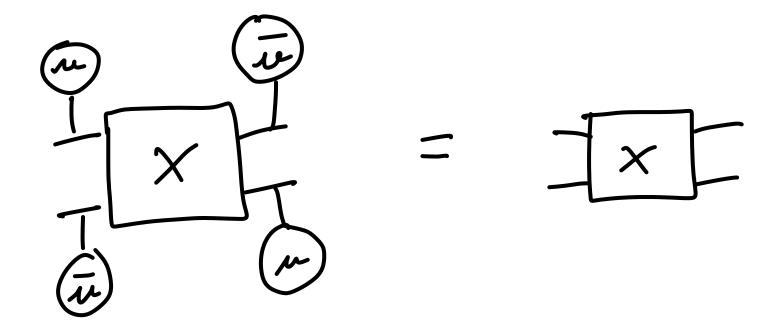
• CLDUI (conjugate LDUI) if

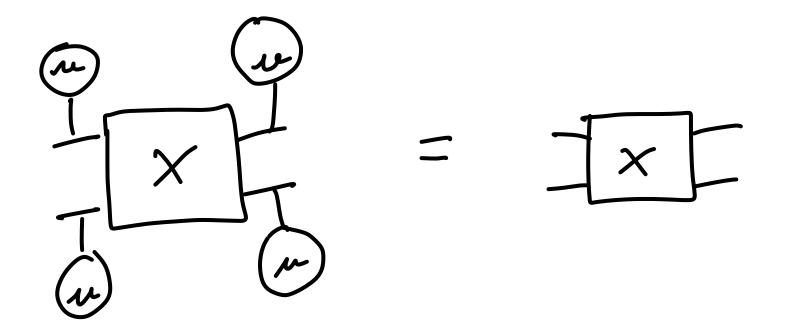
$$\forall U \in \mathcal{D}\mathcal{U}_d, \quad (U \otimes \bar{U})X(U^* \otimes U^\top) = X$$

• LDOI (local diagonal orthogonal invariant) if

$$\forall U \in \mathcal{D}\mathcal{O}_d, \quad (U \otimes U)X(U^{\mathsf{T}} \otimes U^{\mathsf{T}}) = X$$



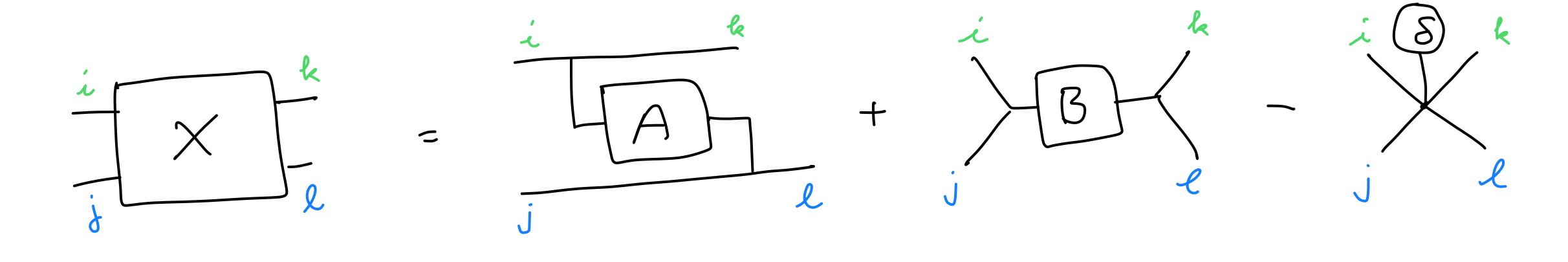




Characterisation theorem — CDLUI case

Theorem. A matrix $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ is CLDUI iff there exist matrices $A, B \in \mathcal{M}_d$ having the same diagonal diag $A = \operatorname{diag} B =: \delta \in \mathbb{C}^d$ such that

$$X_{ij,kl} = \mathbf{1}_{i=k,j=l} A_{ij} + \mathbf{1}_{i=j,k=l} B_{ik} - \mathbf{1}_{i=j=k=l} \delta_i$$



$$=$$
 A $=$ B

Characterization theorem - LDUI and LDOI

Theorem. A matrix $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ is LDUI iff there exist matrices $A, C \in \mathcal{M}_d$ having the same diagonal diag $A = \operatorname{diag} C =: \delta \in \mathbb{C}^d$ such that

$$X_{ij,kl} = \mathbf{1}_{i=k,j=l} A_{ij} + \mathbf{1}_{i=l,j=k} C_{ij} - \mathbf{1}_{i=j=k=l} \delta_i$$

Theorem. A matrix $X \in \mathcal{M}_d \otimes \mathcal{M}_d$ is LDOI iff there exist matrices $A, B, C \in \mathcal{M}_d$ having the same diagonal diag $A = \operatorname{diag} B = \operatorname{diag} C =: \delta \in \mathbb{C}^d$ such that

$$X_{ij,kl} = \mathbf{1}_{i=k,j=l} A_{ij} + \mathbf{1}_{i=j,k=l} B_{ik} + \mathbf{1}_{i=l,j=k} C_{ij} - 2\mathbf{1}_{i=j=k=l} \delta_{i}$$

Three examples

• The identity matrix is CLDUI with

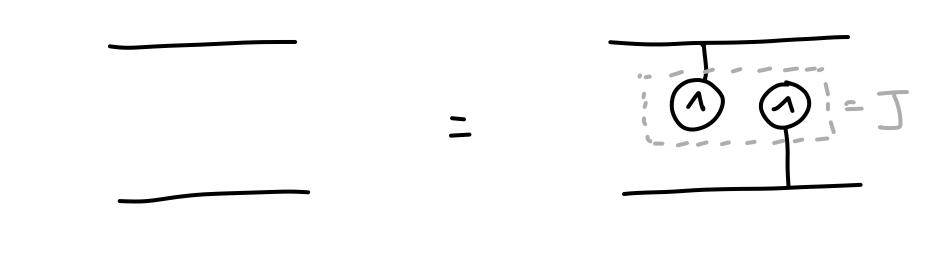
$$A = J_d, B = I_d$$

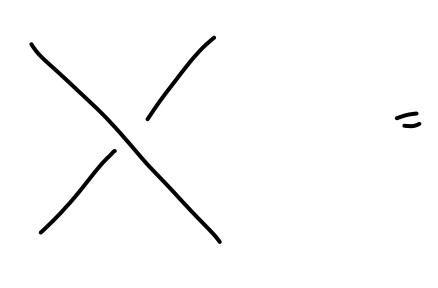
• The maximally entangled state is

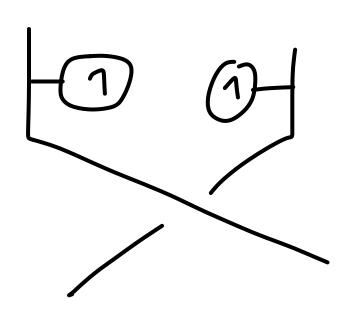
CLDUI with
$$A = I_d$$
, $B = J_d$

• The flip operator is LDUI with

$$A = I_d, B = J_d$$







Symmetric bipartite PSD operators

Properties of symmetric operators

Theorem. A bipartite LDOI operator $X = X_{A,B,C}$ is

- self-adjoint iff *A* is real and *B*, *C* are self-adjoint
- positive semidefinite iff the following three conditions hold:
 - 1. *A* is entry-wise non-negative $(A_{ij} \ge 0 \text{ for all } i, j)$
 - 2. *B* is positive semidefinite
 - 3. $A_{ij}A_{ji} \ge |C_{ij}|^2$ for all i, j

Note that LDUI operators correspond to *B* diagonal, and CLDUI operators correspond to *C* diagonal.

Separability for diagonal symmetric matrices

Theorem. A bipartite CLDUI operator of the form $X = X_{A,A} \in \mathcal{M}_d(\mathbb{C}) \otimes \mathcal{M}_d(\mathbb{C})$ is separable iff the matrix A is completely positive, i.e.

$$\exists R \in \mathcal{M}_{d \times k}(\mathbb{R}_+) \quad \text{s.t.} \quad A = RR^\top.$$

The columns of the non-negative square root R give the separable decomposition

$$X = \sum_{i=1}^{k} |r_i\rangle\langle r_i| \otimes |\bar{r}_i\rangle\langle \bar{r}_i|.$$

In this case, $A = \sum_{i=1}^{k} \left| |r_i|^2 \right\rangle \left\langle |r_i|^2 \right|$. In dimensions $d \leq 4$ completely positive matrices are precisely positive semidefinite matrices with non-negative entries.

PCP and TCP matrices

Definition. A pair of matrices (A, B) is called pairwise completely positive (PCP) if there exist matrices $V, W \in \mathcal{M}_{d \times k}(\mathbb{C})$ such that

$$A = (V \odot \overline{V})(W \odot \overline{W})^*$$
 and $B = (V \odot W)(V \odot W)^*$.

A triple (A, B, C) is called triplewise completely positive (TCP) if, additionally, $C = (V \odot \overline{W})(V \odot \overline{W})^*$.

Theorem. A (C)LDUI matrix $X_{A,B}$ is separable iff the pair (A,B) is PCP. An LDOI matrix $X_{A,B,C}$ is separable iff the triple (A,B,C) is TCP.

Application: the PPT² conjecture

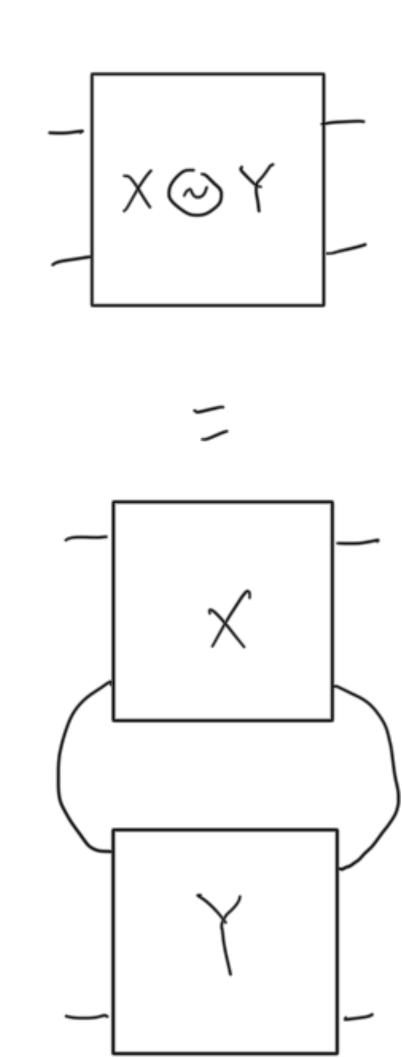
Conjecture. The link product of two PPT matrices is separable.

Recall that a (C)LDUI matrix $X_{A,B}$ is PPT (positive partial transpose) iff A is entrywise non-negative, B is PSD, and $\forall i,j,A_{ij}A_{j,i} \geq |B_{ij}|^2$.

Theorem. The PPT² conjecture holds for (C)LDUI matrices.

Proposition. Let $X_{A,B}$ be a PPT (C)LDUI matrix. If B is diagonally dominant (i.e. $\forall i, A_{ii} = B_{ii} \geq \sum_{j \neq i} |B_{ij}|$), then (A,B) is PCP ($\iff X_{A,B}$ is separable).

The proof of the proposition relies on the notion of factor width.



Take home slide

- Multipartite quantum states that are symmetric with by conjugation with diagonal unitary (resp. orthogonal) matrices form a rich, interesting class.
- The CLDUI class is parametrised by two matrices *A*, *B* having a common diagonal. This class contains all classical (diagonal) states and the maximally entangled state.
- A CLDUI matrix $X_{A,B}$ is PSD iff A is entry-wise non-negative and B is PSD.
- A CLDUI matrix $X_{A,B}$ is separable iff the pair (A,B) is pairwise completely positive (PCP). This is a generalisation of completely positive matrices.
- (C)LDUI matrices satisfy the PPT² conjecture; the proof uses the notion of factor width and its generalisation to the PCP setting.