Diagonal Unitary and Orthogonal Symmetries in Quantum Theory

joint work with Satvik Singh (Cambridge UK)

A graphical calculus for integration over random diagonal unitary matrices - LAA 613 (2021) [arXiv:2010.07898] Diagonal unitary and orthogonal symmetries in quantum theory - Quantum 5, 519 (2021) [arXiv:2112.11123] The PPT ${ }^{2}$ conjecture holds for all Choi-type maps - Annales Henri Poincaré 23 (2022) [arxiv:2011.03809]

Ion Nechita (CNRS, LPT Toulouse) CEQIP 2023

Plan of the talk

1. Unitary symmetry in quantum information
2. Diagonal unitary / orthogonal symmetry
3. Positive semidefinite bipartite operators

Unitary symmetry in quantum information

Symmetry in quantum theory

- Quantum states are modelled mathematically by density matrices

$$
\left\{\rho \in \mathscr{M}_{d}(\mathbb{C}): \rho \geq 0 \text { and } \operatorname{Tr} \rho=1\right\}
$$

- Unitary operators encode time evolution

$$
\rho \mapsto U \rho U^{*}, \quad \text { for } U \in U_{d}
$$

- We would like to consider quantum states which are left invariant by a certain class of unitary operators

Example. If $U X U^{*}=X$ for all $U \in \mathscr{U}_{d}$, then X must be a scalar matrix, i.e. $X=c I_{d}$ for some constant $c \in \mathbb{C}$. For density matrices, $c=1 / d$.

Bipartite operators

- Quantum entanglement is of the key features of quantum theory. It appears when one considers two quantum systems.
- In this case, the set of quantum states is given by bipartite matrices:

$$
\left\{\rho_{A B} \in \mathscr{M}_{d} \otimes \mathscr{M}_{d} \cong \mathscr{M}_{d^{2}}: \rho \geq 0 \text { and } \operatorname{Tr} \rho=1\right\}
$$

Two examples

- Separable states are bipartite quantum states which can be written as convex combinations of product states $\rho_{A} \otimes \rho_{B}$

$$
-\rho_{A B}=\sum_{i} p_{i}-\rho_{A}^{(i)}
$$

- Entangled states are the non-separable states. The most important example is the maximally entangled state

$$
\omega=\frac{1}{d} \sum_{i, j=1}^{d}|i i\rangle\langle j j|
$$

$$
\left.-\rho_{A B}=\frac{1}{d}\right] C
$$

(Full) Unitary symmetry in the bipartite case

Theorem. Let $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ be a bipartite operator. Then
$\forall U \in U_{d},(U \otimes U) X(U \otimes U)^{*}=X \Longleftrightarrow X=\alpha I_{d^{2}}+\beta F$ for $\alpha, \beta \in \mathbb{C}$
where the (unitary) flip operator is defined by $F x \otimes y=y \otimes x$.

Isotropic quantum states

Theorem. Let $\rho \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ be a bipartite density matrix. Then

$$
\forall U \in U_{d},(U \otimes \bar{U}) \rho U^{*} \otimes U^{\top}=\rho \Longleftrightarrow \rho=(1-p) \frac{I}{d^{2}}+p \omega \text { for } p \in\left[-1 /\left(d^{2}-1\right), 1\right]
$$

i.e. ρ must be a convex combination of the maximally mixed state and the maximally entangled state. Such quantum states are called isotropic.

$$
\begin{aligned}
& - \text { [u- }-\sqrt{u^{2}}-\sqrt{u^{\top}}=-\rho- \\
& \left.\Leftrightarrow-\rho-\frac{1-p}{d^{2}}-+\frac{p}{d}\right)(
\end{aligned}
$$

An isotropic state ρ is separable iff it is PPT iff $p \leq 1 /(d+1)$.

Diagonal unitary / orthogonal symmetry

The diagonal subgroup

- Since requiring the full unitary symmetry yields matrices (resp. quantum states) with only 2 parameters, we shall consider the much smaller subgroups

$$
\begin{aligned}
& \mathscr{D} \mathscr{U}_{d}:=\left\{\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{d}}\right): \theta \in \mathbb{R}^{d}\right\} \\
& \mathscr{D} \mathcal{O}_{d}:=\left\{\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{d}\right): \epsilon \in\{ \pm 1\}^{d}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& u== \\
& u_{i j}=\delta_{i j} \cdot \mu_{i}
\end{aligned}
$$

- In the case of a single tensor factor, we have

$$
\forall U \in \mathscr{D} \mathscr{U}_{d}, \quad U X U^{*}=X \Longleftrightarrow X=\operatorname{diag}(X)
$$

$$
\stackrel{(i)}{x}=-\sqrt{x} \Leftrightarrow-x=\sqrt{x}
$$

Diagonally symmetric bipartite matrices

Definition. A bipartite matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is called:

- LDUI (local diagonal unitary invariant) if

$$
\forall U \in \mathscr{D} U_{d}, \quad(U \otimes U) X\left(U^{*} \otimes U^{*}\right)=X
$$

- CLDUI (conjugate LDUI) if

$$
\forall U \in \mathscr{D} \mathscr{U}_{d}, \quad(U \otimes \bar{U}) X\left(U^{*} \otimes U^{\top}\right)=X
$$

$=\sqrt{x}$

- LDOI (local diagonal orthogonal invariant) if

$$
\forall U \in \mathscr{D} \mathscr{O}_{d}, \quad(U \otimes U) X\left(U^{\top} \otimes U^{\top}\right)=X
$$

Characterisation theorem - CDLUI case

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is CLDUI iff there exist matrices $A, B \in \mathscr{M}_{d}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=j, k=l} B_{i k}-\mathbf{1}_{i=j=k=l} \delta_{i}
$$

Characterization theorem - LDUI and LDOI

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is LDUI iff there exist matrices $A, C \in \mathscr{M}_{d}$ having the same diagonal diag $A=\operatorname{diag} C=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=l, j=k} C_{i j}-\mathbf{1}_{i=j=k=l} \delta_{i}
$$

Theorem. A matrix $X \in \mathscr{M}_{d} \otimes \mathscr{M}_{d}$ is LDOI iff there exist matrices $A, B, C \in \mathscr{M}_{d}$ having the same diagonal $\operatorname{diag} A=\operatorname{diag} B=\operatorname{diag} C=: \delta \in \mathbb{C}^{d}$ such that

$$
X_{i j, k l}=\mathbf{1}_{i=k, j=l} A_{i j}+\mathbf{1}_{i=j, k=l} B_{i k}+\mathbf{1}_{i=l, j=k} C_{i j}-2 \mathbf{1}_{i=j=k=l} \delta_{i}
$$

Three examples

- The identity matrix is CLDUI with

$$
A=J_{d}, B=I_{d}
$$

- The maximally entangled state is

CLDUI with $A=I_{d}, B=J_{d}$

- The flip operator is LDUI with

$$
A=I_{d}, B=J_{d}
$$

More examples

Werner and isotropic states
$X_{a, b}^{\mathrm{Wer}}=a\left(I_{d} \otimes I_{d}\right)+b \sum_{i, j=1}^{d}|i j\rangle\langle j i|$ and $X_{a, b}^{\mathrm{iso}}=a\left(I_{d} \otimes I_{d}\right)+b \sum_{i, j=1}^{d}|i i\rangle\langle j j|$ are,
respectively, LDUI and CLDUI, with $A=b I_{d}+a J_{d}$ and $B=a I_{d}+b J_{d}$.

Mixtures of Dicke states or diagonal symmetric matrices
$X_{Y}^{\text {dicke }}=\sum_{1 \leq i \leq j \leq d} Y_{i j}\left|\psi_{i j}\right\rangle\left\langle\psi_{i j}\right|$ are LDUI, with $A=B=\operatorname{diag}(Y)+(Y-\operatorname{diag}(Y)) / 2$.
Here, $\psi_{i i}=|i i\rangle$ and $\psi_{i j}=(|i j\rangle+|j i\rangle) / \sqrt{2}$.

Symmetric bipartite PSD operators

Properties of symmetric operators

Theorem. A bipartite LDOI operator $X=X_{A, B, C}$ is

- self-adjoint iff A is real and B, C are self-adjoint
- positive semidefinite iff the following three conditions hold:

1. A is entry-wise non-negative $\left(A_{i j} \geq 0\right.$ for all $\left.i, j\right)$
2. B is positive semidefinite
3. $A_{i j} A_{j i} \geq\left|C_{i j}\right|^{2}$ for all i, j

Note that LDUI operators correspond to B diagonal, and CLDUI operators correspond to C diagonal.

Separability for diagonal symmetric matrices

Theorem. A bipartite CLDUI operator of the form $X=X_{A, A} \in \mathscr{M}_{d}(\mathbb{C}) \otimes \mathscr{M}_{d}(\mathbb{C})$ is separable iff the matrix A is completely positive, i.e.

$$
\exists R \in \mathscr{M}_{d \times k}\left(\mathbb{R}_{+}\right) \quad \text { s.t. } \quad A=R R^{\top} .
$$

The columns of the non-negative square root R give the separable decomposition

$$
X=\sum_{i=1}^{k}\left|r_{i}\right\rangle\left\langle r_{i}\right| \otimes\left|r_{i}\right\rangle\left\langle r_{i}\right| .
$$

In this case, $A=\sum_{i=1}^{k}\left|r_{i}\right\rangle\left\langle r_{i}\right|$.

More on completely positive matrices

Completely positive matrices are doubly non-negative: they have non-negative entries and they are positive semidefinite:

$$
\mathrm{CP}_{d} \subseteq \mathrm{DNN}_{d}:=\left\{A \in \mathscr{M}_{n}(\mathbb{R}): A_{i j} \geq 0 \forall i, j \text { and } A \geq 0\right\}
$$

For $d \leq 4, \mathrm{CP}_{d}=\mathrm{DNN}_{d}$, so, in particular, every PPT CLDUI $X_{A, A}$ state is separable.

For $d \geq 5$, there exist DNN matrices that are not completely positive, so there exist PPT entangled $X_{A, A}$ states.

In general, it is NP-hard to detect membership in CP.

$$
A=\left[\begin{array}{lllll}
7 & 4 & 0 & 0 & 4 \\
4 & 7 & 4 & 0 & 0 \\
0 & 4 & 7 & 4 & 0 \\
0 & 0 & 4 & 7 & 4 \\
4 & 0 & 0 & 4 & 7
\end{array}\right]
$$

PCP and TCP matrices

Definition. A pair of matrices (A, B) is called pairwise completely positive (PCP) if there exist matrices $V, W \in \mathscr{M}_{d \times k}(\mathbb{C})$ such that

$$
A=(V \odot \bar{V})(W \odot \bar{W})^{*} \quad \text { and } \quad B=(V \odot W)(V \odot W)^{*} .
$$

A triple (A, B, C) is called triplewise completely positive (TCP) if, additionally, $C=(V \odot \bar{W})(V \odot \bar{W})^{*}$.

Theorem. A (C)LDUI matrix $X_{A, B}$ is separable iff the pair (A, B) is PCP. An LDOI matrix $X_{A, B, C}$ is separable iff the triple (A, B, C) is TCP.

Application: the PPT 2 conjecture

Conjecture. The link product of two PPT matrices is separable.

Recall that a (C)LDUI matrix $X_{A, B}$ is PPT (positive partial transpose) iff A is entrywise non-negative, B is PSD, and
 $\forall i, j, A_{i j} A_{j, i} \geq\left|B_{i j}\right|^{2}$.

Theorem. The PPT ${ }^{2}$ conjecture holds for (C)LDUI matrices.
Proposition. Let $X_{A, B}$ be a PPT (C)LDUI matrix. If B is diagonally dominant (i.e. $\forall i, \quad A_{i i}=B_{i i} \geq \sum_{j \neq i}\left|B_{i j}\right|$), then (A, B) is PCP $\left(\Longleftrightarrow X_{A, B}\right.$ is separable).

The proof of the proposition relies on the notion of factor
 width.

Factor width

Definition. A positive semidefinite matrix B is said to have factor width k if it admits a decomposition $B=\sum_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$, where the complex vectors v_{i} have support at most k .

Matrices with factor width 1 are diagonal matrices. The comparison matrix $\mathrm{M}(\mathrm{B})$ of B is defined by $M(B)_{i i}=\left|B_{i i}\right|$ and $M(B)_{i j}=-\left|B_{i j}\right|$ for $i \neq j$.

Theorem. A positive semidefinite matrix B has factor width 2 if and only if $M(B)$ is positive semidefinite. In particular, if B is diagonally dominant, then B has factor width 2.

Proposition. A pair (A, B) with A non-negative, B positive semidefinite such that $A_{i j} A_{j i} \geq\left|B_{i j}\right|^{2}$ and B has factor width 2 is PCP. (used in the proof of PPT²)

Take home slide

- Multipartite quantum states that are symmetric with by conjugation with diagonal unitary (resp. orthogonal) matrices form a rich, interesting class.
- The CLDUI class is parametrised by two matrices A, B having a common diagonal. This class contains all classical (diagonal) states and the maximally entangled state.
- A CLDUI matrix $X_{A, B}$ is PSD iff A is entry-wise non-negative and B is PSD.
- A CLDUI matrix $X_{A, B}$ is separable iff the pair (A, B) is pairwise completely positive (PCP). This is a generalisation of completely positive matrices.
- (C)LDUI matrices satisfy the PPT² conjecture; the proof uses the notion of factor width and its generalisation to the PCP setting.

