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CHAPITRE

Introduction



1.0.1 Motivation and context

Quantum information theory, an interdisciplinary field that combines principles
of quantum mechanics and information theory, bridges theoretical physics, computer
science, and mathematics. The primary goal of the field is to understand quantum
properties within physical systems, which can then be used to manipulate and trans-
mit information. As a rapidly evolving field of research, quantum information theory
has the potential to catalyze significant advances in cryptography, computing, and
communications.

A fundamental concept within quantum information theory is quantum entan-
glement, which refers to the correlations that exist between two or more quantum
systems. These non-classical correlations allow tasks to be performed that are im-
possible in classical systems. Quantum entanglement has emerged as a key resource
for quantum information processing, enabling operations such as teleportation, su-
perdense coding, and quantum error correction.

Quantum channels, another key concept in quantum information theory, describe
the transmission of quantum information. The development of efficient and reliable
techniques for quantum information transmission is essential for the realization of
quantum communication and quantum computing. Quantum cloning channels, a spe-
cific category of quantum channels, refer to the notion of quantum cloning, which
involves the creation of multiple identical copies of an unknown quantum state. Al-
though perfect quantum cloning is impossible due to the no-cloning theorem, resul-
ting from the linearity of quantum mechanics, the creation of approximate copies
remains feasible.

The present work aims to provide an exhaustive investigation of quantum cloning
problems, along with related quantum entanglement problems. The analysis of these
topics is based on the application of the core concepts of representation theory, in
particular those associated with the symmetric group. The use of these concepts
allows the unification of different topics and a more extensive comprehension of the
matters at hand.

To achieve this goal, the initial exploration involves the fundamental notion of
Schur-Weyl duality, which provides a critical link between the symmetric group and
the unitary group. This duality allows efficient representation and manipulation of
quantum systems, making it a valuable tool for further research in quantum infor-
mation theory. Additionally, various extensions of the Schur-Weyl duality, involving
others groups and algebras, are studied.

A primary application of Schur-Weyl duality that receives special attention is
the quantum cloning, which involves the creation of multiple copies of an unknown



quantum state. Both the 1 — 2 case and the more general 1 — N case, where N
copies of an unknown state are created, are studied, providing new insights into the
constraints imposed by the no-cloning theorem.

The investigation then extends to a more general quantum entanglement pro-
blem, exploring its relation to Schur-Weyl duality and developing novel techniques
for analyzing and solving the problem.

1.0.2 Preliminaries

Let H := C¢ be a finite d-dimensional complex Hilbert space, and let M, denote
the the space of d x d complex matrices acting on H. Given a matrix M € My,
its conjugate transpose M is denoted M*. The Frobenius inner product on M, is
defined by,

(A,B) :=Tr [A*B].

Using the Dirac notation, vectors are denoted as kets, represented by ‘77/}>, while
their duals are called bras, denoted by <w} The inner product on ‘H becomes simply,

(¥|¢) € C,

and the outer product,
6o € M.

On a tensor product space H; ® - - - ® H,,, the notations M;) and v(; for a matrix
M € Mg, and a vector v € H,; are used to denote the position of the matrix and the
vector on the tensor space H;. Given a matrix M € My ® --- ® My, , the partial
transpose M denotes the transpose operation of the first tensor space H;, and the
partial trace Tr;[M] denotes the trace operation on the tensor space H,.

Additionally, the notation [n] is used to denote alternatively the set {1,...,n} or
the set {0,1,...,n}. Both usages are unambiguous in their context.

1.0.3 Summary of results

In quantum information theory, the process of copying of a state, written

Y= YR,

and called quantum cloning, can be performed perfectly if and only if ¢ is an element
of a known orthonormal basis. Otherwise, perfect cloning becomes impossible, and



the resulting copies turn out to be imperfect. This phenomenon is known as the no-
cloning theorem, and is part of the family of no-go theorems in theoretical physics
that describe an intrinsic impossibility of quantum mechanics.

This impossibility gives rise to an optimization problem called the 1 — N quan-
tum cloning problem, which is defined as follows : identify a specific quantum channel,
called the quantum cloning channel, denoted by ® : M,; — (./\/ld)®N, which maps
an input pure quantum state on H to an output mixed quantum state on H®", such
that the output marginals of ® are as close as possible to the input. In the most
general case, each marginal of ® can be different, resulting in asymmetric copies.

It can be show, after a suitable symmetrisation procedure, that the marginals ®;
of such a quantum cloning channel are of the form :

Iy
7
for some probabilities p; € [0, 1]. The quantum cloning problem can be reformulated
as the problem of identifying the set of achievable probabilities p;, and their associated
quantum cloning channel ®.

The first part of this thesis focuses on the 1 — 2 quantum cloning problem.
In this special case, a simple description of both the quantum cloning channels &
and the achievable probabilities p; can be given. The quantum cloning channels are
parameterised, independently of the the dimension of H, by only 6 coefficients, and
this number of parameters decreases to only 4 in the optimal quantum cloning channel
with respect to the optimisation problem. The achievable probabilities (pi,p2) are
described by the union of a family of ellipses indexed by A € [0, d], given by

S:(p)=pi-p+ (1 —p) Vp pure,

xQ (y _ C)\)2

— + S 17
ax b
with ay = —2— by == 25, ex = 353, and & = py — pa, y = p1 + pa.

The second part of this thesis focuses on the general 1 — N quantum cloning
problem. The quantum cloning channels are this time parameterised, independently
of the the dimension of H, by the N coefficients of a largest eigenvector of a matrix
S,, defined for all z € RV by,

N d-1

Se= ) Y Janl - [#)47 ] g @ T7V Y

k=1 i,j=0
From this matrix is derived the Q-norm, a norm on R" defined on = € RY by,

_ Dae(S) — [l
g i= “mm fe) I,




The achievable probabilities p; are exactly the non-negative part of the unit ball of
the dual Q-norm.

Exploiting the close relationship between quantum channels and quantum states,
the quantum cloning problem can be seen as the quantum entanglement problem of
identifying a quantum state p on a star graph, such that the reduced quantum state
pe on each edge e of the graph is as close as possible to the maximally entangled
state w, i.e.

Iy
pe:pe'w_l_(l_pe)E? Ve edge.
This leads to the more general optimization problem of finding such a quantum state
given any graph, formally defined by the semi-definite programming,

max Z De

p7p
© e edge

1
st pe=pe-w+ (1 — Pe)—d Ve edge

d,
Tr[p]zl, p > 0.

The third part of the thesis focuses on the exact solution for this problem in the
case of the complete graph on N vertices, with equal reduced quantum state, that
is,

p(N,d) =max p
p:p

1,
s.t. pe:p-w+(1—p)—d Ve edge

d )
Tr[p} =1, p=>0.
The close formula for p(N, d) depend on both the values of d and N, and their parity,
1

_ N+N mod 2—1
p(N’ d) - mln{ 2d+1 1
2dN+17 N—-1

if d > N or either d or N is even
if N > d and both d and N are odd.

1.0.4 Outline of the thesis

The thesis is structured as follows. Appendix A provides an overview of the
fundamental principles of representation theory that are used throughout the thesis,
it can be read first, or skipped. Chapter 2 is devoted to the Schur-Weyl duality

8



between the symmetric group and the unitary group, but also various extensions of
the Schur-Weyl duality involving others groups and algebras. Chapter 3 provides a
comprehensive presentation of the mathematical foundations of quantum mechanics
in the context of quantum information theory. Chapter 4 studies the above quantum
cloning problems in both the 1 — 2 and 1 — N cases. Chapter 4 looks at the above
quantum entanglement problem on the complete graph.
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The primary goal of this chapter consists in establishing the foundational result
of Issai Schur and Hermann Weyl, known as the Schur-Weyl duality, which relates
the symmetric group &,, and the complex general linear group GL4. Moreover, this
chapter explores other adaptations of this theorem for distinct groups and algebras.

Theorem (Schur-Weyl duality [Sch27; Wey46|). The space of n-fold tensors
over C? decomposes under the action of the direct product group GLg x &, as

follows :
(€)™ ~ P Vi@
o

For a comprehensive exploration of the representation theory concerning the sym-
metric group &,, and the complex general linear group GLg4, refer to Appendix A.
However, the current section aims to provide a self-contained exposition.

Subsequently, two notations for permutations and partitions of the set {1,...,n}
are employed. The conventional cyclic notation (12 3)(4 5) denotes the permutation :

1 2 345
2 315 4)°
and the notation 123 |45 represents the partition :

{{1,2,3},{4,5}}.

2.1 Diagrammatic algebras

The term diagram algebras has no specific definition by axiomatic properties
or other rigorous means. In the present thesis, a diagram algebra refers to a finite
unital associative algebra over the complex field, where the basis consists of homotopy
classes of diagrams. The multiplication operation within this algebraic structure finds
its definition through the process of concatenation. For a survey on diagram algebras,
see [Koe08; HJ20].

In the context of finite dimensional algebras over the algebraically closed field C,
the notion of semisimplicity is employed interchangeably with that of the direct
sum of full matrix algebras, closed under matrix multiplication.

2.1.1 Symmetric group algebra S,

Define &, as the symmetric group, which is the group of order k! containing
all the permutations of the set {1,...,k}. Given a permutation ¢ belonging to the
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symmetric group Sy, it is possible to represent this permutation as a diagram via
a graph consisting of 2k vertices. These vertices are divided equally between two
columns.

Interpretation of the diagram proceeds from right to left. A connection between
the i-th vertex in the right column and the j-th vertex in the left column is established
if and only if the relation o(i) = j holds. For example,

o(3) @ /0 1
o(1) e »9 2
a(2) 0/ e 3

represents the permutation (12 3) of the symmetric group &s.

The composition, denoted by o o 7, of two permutations ¢ and 7 of the symmetric
group &y, is obtained by positioning the diagram of 7 immediately to the right of
the diagram of o, and subsequently associating the leftmost column of 7’s diagram
with the rightmost column of ¢’s diagram. For example, consider the following two
permutations ¢ := (124) and 7 := (1 2)(3), which are elements of the symmetric
group Gs,

o ° °*
o= QKO and T = oxo
0/ ° © m— @

the composition o o 7 = (1 3)(2) becomes

o :K'""X' ) N
~

"---‘ @ mmmm—— @

: Q/ \Q

Numerous generating sets for the symmetric group & exist, with varying cardi-
nalities. A particularly notable generating set is the collection of adjacent transpo-
sitions. This set is characterized by containing the £ — 1 permutations of the form

12



(1 i41), forall 1 <i<k:

° o1

[ Y—

° ®i
P

Oxti—kl

° ®i+2

° ®

Let o be an element of the symmetric group Gk. The cycle type associated
with o, denoted by A, is defined as the [-tuple containing the lengths of the [ disjoint
cycles composing o, arranged in non-increasing order. As a consequence, the cycle
type A corresponds to a partition of the integer k into [ parts, denoted by ) - k.
This partition A obeys the following conditions :

A >--->)\ and Z)\i:k.

Given a partition A F k, let \' denote the conjugate partition associated with A,
defined by : A, is the number of parts in A that are greater than or equal to i. A
partition A - k£ may be represented as a Young diagram, which is a collection of k
empty boxes arranged in left-justified rows such that the i-th row contains \; boxes.
The conjugate partition X', is the partition corresponding to transposing the Young
diagram representing A. For example, consider the permutation o € &7, expressed
as a product of disjoint cycles, arranged in non-increasing order, by

o:=(1234)(567).

The cycle type of ¢ is the partition A\ = 7 given by A := (4, 3), where the i-th entry
of A denotes the length of the ¢-th cycle in the disjoint cycle decomposition of o.
Moreover, the partition A can be represented using a Young diagram, which consists
of 2 rows with 4 and 3 boxes, respectively

The conjugate partition X' = (2,2,2,1) is represented using a Young diagram, which

13



consists of 4 rows with 2, 2, 2, and 1 boxes, respectively :

Note that A} is the length of the first column of A. Within the context of the sym-
metric group &y, the concept of cycle type plays a crucial role in characterizing
conjugacy classes. Specifically, two permutations in &, are said to be conjugate
if and only if their respective cycle types are identical.

Remark. Tt is essential to note that the symmetric group &y, defined as permuta-
tions of the set {1,...,k} or as the above diagrams conveys the same underlying
mathematical structure. These two forms are equivalent and can be employed
interchangeably.

The group algebra of the symmetric group &, denoted by S;, is the complex
vector space spanned by the permutations of G, i.e.

Sk = Span¢ {0 € &,}.

The multiplication in the group algebra Sy, is defined on the elements of the sym-
metric group &y by its group law, and is denoted o - 7, for some o and 7 in &y.

Remark. The symmetric group algebra S;, is a finite group algebra. As a conse-
quence, the symmetric group algebra Sy is always semisimple [Ser+77; FH13|.

2.1.2 Partition algebra P(J)

The partition monoid, denoted Py, is a diagrammatic monoid generated by the
3 x (k —1) diagrams

° o1 ° o1 ° o1
° i1 ° ®i-1 ° i1
.Y.i Cbcﬁi .H.i
o~ NSe i+l ° ® i1 ° ® i1
o0 |2 @ 2 o0 |2
° ® i ° ® i ° ®

14



for all 1 <1 < k, as well as the k disconnected diagrams

Y o1
O 1|
Y )
o0 il
Y ® i

for all 1 < i < k. These 4k — 3 diagrams distributed in 4 distinct collections do not
constitute a minimal generating set, as it is possible to choose a single representative
diagram from each collection and subsequently use the transpositions to generate the
remaining diagrams in the collection.

An element of Py, is a partition of the set {1,...,2k}, corresponding the the
connected components of the associated diagram, where then enumeration of vertices
located in the right column ranges from 1 to k, while the enumeration of vertices
situated in the left column ranges from k£ + 1 to 2k. As a monoid, P, has an identity

1p, given by the partition 1 (k+1)| --- | k(2k) :
E+1 @ - e 1]
Ip, ==
2k @ ® i

Consider two partitions p and ¢ of P, the composition p o ¢ is obtained by po-
sitioning the diagram of ¢ immediately to the right of the diagram of p, associating
the leftmost column of ¢’s diagram with the rightmost column of p’s diagram, and
finally removing any loops, which are the components of the resulting diagram not
connected to either the left or the right column. For example, given the two partitions
p=13]26|45and ¢:=12|35]46 of Ps,

CC

] o=
‘/(‘ and )\‘

the composition pog=12|36 |45 becomes

pog= >/<)\C ~JCG

15



where the gray loop is removed.

Remark. Considering the generators of the partition monoid, the inclusion of
diagrams &, C P, holds for every k£ € N. However, it is important to note that
the partition monoid Py does not constitute a group, e.g. the partition 12|36[45
of P3 has no inverse with respect to the composition in Pj.

The order of the partition monoid P is the number of partition of the set
{1,...,2k}, denoted as the even Bell number Bg,. In general, the Bell number
By is given by a recursive formula, with initial condition By := 1, and

. (k

By = ; (Z.)B@-.

Starting at k = 0, the first values of the Bell numbers are [OEIS, sequence A000110] :
1,1,2,5,15,52, 203, 877, 4140, . ..

The partition algebra, denoted by P.(0) is defined for some § € C, as the
complex vector space spanned by the diagrams of Py, i.e.

Pi(0) == Spang {p € Px}.

The multiplication in Py (d), given two elements p and ¢ in Py, is denoted by p - ¢
and is defined by p-q := §'(poq), where [ is the number of loops removed during the
composition in ;. For example, let p := 14|28|3 567|910 and ¢ := 12|35|4 7|6 9|8 10

be two partitions of P5,
° °
D G

p= O/kﬁ and q= 0\
2 S
° ° . .
the composition pog =12|35[48|67]910 becomes, in the partition algebra P5(J),
o---0 ° °
DLINCG DC
P-qg= e kc--- \o —52e
SEIE e
° - . °

where the number of gray loops removed is 2

16



Remark. The partition algebra Py (d) is not semisimple for all § € C. Specifically,
it is semisimple if and only if § belongs to the set C\ {0,...,2k — 2} [MS94;
HRO5].

2.1.3 Others diagrammatic algebras

In Section 2.1.1, the focus was on the symmetric group &, generated by by k£ —1
permutation diagrams. Then, in Section 2.1.2, attention was turned to the partition
monoid Py, generated by by 4k — 3 diagrams distributed in 4 distinct collections.

The purpose of the present Section is to highlight the relationships between the 4
collections of diagrams generating the partition monoid Py, and the algebraic struc-
tures that emerge. Specifically, the choice of specific collections may yield distinct
monoids.

Remark. A monoid is a unitary semigroup. To obtain the identity diagram 1p,
of the partition monoid P, corresponding to the partition 1 (k+1)| --- | k (2k),
the collection of transpositions is required, as none of the 3 other collections is
composed of invertible elements.

Uniform block permutation algebra Ug(d)

The uniform block permutation monoid, denoted by U,, is the submonoid
of P, generated by the 2 collections of diagrams

° o1 ° o1
° ®i—1 ° i1
° o ° o
< H
oxozﬂrl ° ®i+1
@ @ | 2 @ @ | | 2
° ® i ° o L

foralll1 << k.

The elements of the uniform block permutation monoid U, are precisely those
elements from P, that satisfy the following condition : the number of vertices located
on the left column equals the number of vertices located on the right column for each
connected component of the diagram. This condition is a consequence of the fact that
the 2 collections generating Uy, satisfy it and that it is preserved under multiplication.

17



As a consequence, each connected component contains vertices situated in both the
left and right columns. For example, the partition p := 124536 is in Us,

while the partition ¢ := 12|36 |45 is not in Us,

- C

The order of the uniform block permutation monoid Uy is given by a recursive
formula [SPSO01], with initial condition [Up| := 1, and

k

E\ (k+1

oeal =32 (5) (V1) 1o

Starting at k& = 0, the first values of ‘Uk‘ are |[OELS, sequence A023998| :
1,1,3,16, 131, 1496, . . .

The uniform block permutation algebra, denoted by U, () is defined for some
d € C, as the subalgebra of the partition algebra P;(d), spanned by the element of
the uniform block permutation monoid Uy, i.e

Uk(d) = Spanc {p c Uk}
The multiplication in Ug(d) does not yield any loops. Consequently, all the uniform

block permutation algebras are isomorphic, for all § € C.

Remark. The uniform block permutation monoid Uy, is a finite inverse monoid,
i.e. forall € Uy there exists a unique x* € Uy satifying z o 2* oz = z and
r* oxox* = x*. As a consequence, all the uniform block permutations algebras
Uk (9) are semisimple for all 6 € C [Ore+21; Ste+16].

18



Brauer algebra By (6)

The Brauer monoid, denoted by B,, is the submonoid of P, generated by the
2 collections of diagrams

° o1 ° Il
() ® 1 ® -1
° e

< DC
oxomtl ®i+1
° ® i+2 ® i+2
° e/ ° e L

forall1 << k.

The elements of the Brauer monoid B, are precisely all the pairings on the set
{1,...,2k}. Specifically, each vertex of a diagram in By, has precisely a degree of 1.
Given a diagram of By, the vertical edges are the edges that connect vertices within
the same column, whereas the horizontal edges are the edges that connect vertices
of both the left and right columns. For example, the partition p:= 13|26 |45 is in

B3,
v oD Lo
C/CC

The order of the Brauer monoid B, is given by the odd factorial,
Bi| = (2k — 1)L,
Starting at k& = 0, the first values of ‘IB%k‘ are |[OEIS, sequence A001147] :
1,1,3,15, 105, 945, 10395, . .

The Brauer algebra, denoted by B (0) is defined for some § € C, as the subal-
gebra of the partition algebra P,(d), spanned by the element of the Brauer monoid
]Bk, 1.e

By, (6) := Span¢ {p € By }.

Remark. The Brauer algebra By (9) is not semisimple for all 6 € C. Specifically it
is semisimple if and only if one of the following conditions hold [Wen88; DWH99 ;
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Rui05 ; RS06; AST17] :
— 0=0and k € {1,3,5};
— 0€Z\{0}and k < |0| +1;
— 0 & Z.

Walled Brauer algebra By ;(0)

The walled Brauer monoid, denoted by B, ;, is the submonoid of By, genera-
ted by the 2 collections of diagrams

[ ] o1 [ ] o1
° ®i—1
o _®i ° °
‘x. it1  mmee wall = ===
° ) o "f+1
° ® i : :‘7_*1
SEEER T =%
o—eo i +1 oxo j4+1
. o ® j+2
) [ QS ® ® L+

forall 1 <i< k <j<k+1, as well as the diagram

(] o1
®i—1
® Lk+1
® Lk+2

[ J ® k+1

The wall of the walled Brauer monoid By ; denotes the vertical separation between
the uppermost 2k vertices and the lowermost 2/ vertices. The diagram elements of
By, are precisely those elements from By; that satisfy the following condition : every
vertical edge must cross the wall, while no horizontal edge shall cross the wall. The
condition arises from the fact that the £ 41 — 1 diagrams generating B;,; satisfy the

20



condition, in addition to preserving this property under multiplication. For example,
the partition p :=14[27[39[510[612|811 is in B 3,

[

A

'

/

while the partition ¢ :=13[27|49|510|612|811 is in Bg but not in Bj 3,

A

>
£

=
1
1
1
1

)
I
1
o .
|
—

Remark. Given the generators of the walled Brauer monoid By, the inclusion
of diagrams & x &; C By, holds for every k,l € N. The diagrams of &, x &;
consists of those from Bj; with no edges crossing the wall.

The operation denoted as partial transposition corresponds to the process that
exchanges vertex ¢ and vertex k 4 [ 4 ¢, both situated on the same row. However, it
should be noted that the diagram obtained after performing such an operation may
not necessarily belong to Bj; anymore. For example, the transposition of the 1-st
row of the partition 14]27|39|510|612|811 in B33 becomes,

21



which correspond to the partition 12|39 [47]510(612|811 in Bg but not in By 5.

The partial transposition involving the [ lowest vertices constitutes a one-to-one
mapping from the walled Brauer monoid Bj; to the symmetric group &j4;. As a
consequence,

|Big| = (k+1)".

The walled Brauer algebra, denoted by B, ,(0) is defined for some ¢ € C, as
the subalgebra of the Brauer algebra By,(d), spanned by the element of the walled
Brauer monoid By, i.e

By (0) == Spang {p € Bk,l}-

Remark. The walled Brauer algebra By ;(d) is not semisimple for all § € C.
Specifically it is semisimple if and only if one of the following conditions hold
[Cox+-08 ; Bul20] :

— k=0o0rl=0;

— d=0and (k1) € {(1,2),(2,1),(1,3),(3,1)};

— 0€Z\{0}and k+1<|§|+1;

— 0 ¢ Z.

2.2 Tensor representation

The diagrammatic algebras described in Section 2.1 act on the d"-dimensional
tensor product complex vector space (Cd)®n by considering the mapping ¢, called
tensor representation, from the diagrammatic monoids on 2n vertices to Mn,
and defined for each diagram p by,

(w(p))il """ o 1 if 4, =45, for all vertices k and [ connected in p
0 otherwise,

and linearly extended to the entire diagrammatic algebra. For example, let the par-
tition p:==13]26|45 in Brauer algebra Bs(d),

- D/C
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with some vector xy, 1o, 73 € C? and yy, s, y3 € C?, then

Y1 .D ® I
(11 ©y2 @ ys| () |11 @ 22 @ w3) = Y2 @ (o Ty

Ys 0/\0 T3

= <9€1,9€3> : <x2,y3> : <ylay2> .

Remark. In the case where the diagrammatic algebras depends on a complex

parameter 6 € C, the tensor representation acting on the tensor product complex
d Xn .

vector space ((C ) , requires that 6 = d.

The tensor representations on C2® C?, of all the 3 diagrams spanning the Brauer
algebra By (2) are

1 001 1000
o e\ [0 00O . .® |00 10
ZZ’(.)C.)_ 000 0] ZD(.X.)_ 0100
1 001 0001
and the identity tensor
1 000
s(e—® [0 100
0001

For the symmetric group &,,, spanning the symmetric group algebra S,,, this
action corresponds to the permutation of the tensor positions, i.e. for all o € &,, and
all v1,...,v, in C% the tensor representation of o on (C%) ®" gives the action

2/)(0) . (Ul ® cee ® Un) = Ua‘l(l) ® s ® Ucr‘l(n)-

The partial transposition operation on a row, for a given diagram p, corresponds
to the partial transposition of a tensor, for the matrix ¢ (p). For example, let the
partition 12|34 in the Brauer algebra By(2), then taking the partial transposition
on the 1-st row gives :

=\ 100 0 100 1
o~ o o _® (0010 0000
— 7 | _ —
‘D(.)C.)_w(.x.)_ 0100/ {0000

0001 100 1
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The operation referred to as closing a diagram consists in connecting each vertex
of the diagram, to the vertex located in the same row, yielding a collection of loops.
The trace of the tensor representation on ((Cd)®n, for a diagram p, can be obtained
by Tr [w(p)} = d', where [ is the number of loops after closing the diagram p. For
example, let the partition p := 1245 |36 in the uniform block permutation algebra
Us(d),

the closing of p is

with 2 loops, then the trace of ¥(p) becomes Tr [¢(p)] = d*.

The tensor representation of a diagrammatic algebra is in general non-faithfull.
For example, let S3 be the symmetric group algebra with the its tensor representation
on C? ® C? ® C? given by the map 1, and define sign(o) to be a signature of the
permutation o € &3, then

Remark. In certain cases, diagrammatic algebras may not exhibit semisimplicity.
However, the algebra A defined by the complex span of 1 (p), for all p in some
diagrammatic monoid, always exhibits semisimplicity, as a matrix algebra :

A MT" @ - My,

with some multiplicities n; and dimensions d;. In this basis, an element A € A
is written,
A, @A @ &1, ® A
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2.3 Schur-Weyl dualities

2.3.1 Commutant

Given a matrix algebra A C My, the commutant of A, denoted A’, is the set
of matrices that commute with all elements of A :

A ={MeMs| MA=AM, forall Ac A}.

Theorem 2.1 ([Ser+77; FH13|). Let A be a matriz algebra, and B the com-
mutant of A. Suppose A decomposes as A >~ Mfl'inl S D Mfi"k. Then for all
Ae Aand B € B,

k
i=1

k
B~ B® 1.

i=1

Furthermore both A and B are commutants of each other, i.e. B=A" and A = B'.

2.3.2 Schur-Weyl duality for G,

Let GL,; be the complex general linear group of degree d, which consists of
the d x d invertible complex matrices acting on C?. This action extends diagonally
to an action on the d"-dimensional tensor product complex vector space ((Cd) ®n,

defined for M € GL,; on tensor v1 ® -+ - ® v,, € ((Cd)®n by,
M®”.(U1®...®UH):M.U1®...®M.Um

and extended linearly.

Let A and B be the matrix algebras generated, respectively, by the actions of
the symmetric group &,, and the complex general linear group GLg4, on the d"-
dimensional tensor product complex vector space ((Cd) ®n, ie.

A = Span¢ {¢(0) |0 € &,,}
B := Spang {M®" | M € GL4} .

Theorem ([GWO09]). Both A and B are commutants of each other.
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The matrix algebra A, generated by the tensor representation of the symmetric
group &,,, can be decomposed as the direct sum,

Sny

A @ de ’
AFn
A <d

indexed by the Young diagrams A with n boxes and at most d rows.! Then acording
to Theorem 2.1, for all A € A and B € B,

A~@PrL,®A, ad B@PB®I,,

AFn AFn
N <d N <d

where the A, act on a space denoted V/,, and the By act on a space denoted 1/,

Theorem 2.2 (Schur-Weyl duality [Sch27; Wey46|). The space of n-fold tensors
over C* decomposes under the action of the direct product group GLg x &, as

follows :
(Cd) o ~ @ V)\d X V,\.
AFn
X <d
The diagonal action of GLg4, on the d"-dimensional tensor product complex vector
space ((Cd) " can be restricted to the subgroup of the unitary group of degree d,
denoted U,, which consists of the d x d unitary matrices acting on C?.

Theorem 2.3. Let C be the matriz algebra generated by the action of the unitary
group Uy, on the d"-dimensional tensor product complex vector space ((Cd) ®n, i.€e.

C := Spang {U®” { U e Ud}. Then
B~C.

Proof. The present proof is from an unpublished note by Guillaume Aubrun
[Aub18]. Due to the inclusion U; C GLyg, it follows that C C B. To establish the
result, it suffices to prove that for M € GLg, the n-fold M®" can be expressed
as a limit of linear combinations of n-fold U®", for some U € Uy.

Without loss of generality, assume that M can be multiplied by a real scalar

1. see Appendix A
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to obtain a singular value decomposition given by,

d
M= silesXfl.
=1

where ey, ...,eqand fi, ..., fi are two orthonormal bases of C?, and s, are non-
negative real numbers satisfing —1 < s; < 1. Notice that the matrix obtained
by replacing each s; with a complex number z; satisfying |z;| = 1 is unitary.
Then

d ®n

Mo = (o leikl)

i=1

d n
= 3 TMwkasseho okl

i1,eyin=1 j=1

Let v be a counterclockwise unit circle in the complex plane. It is well-
known from Cauchy’s formula, that for all s € R such that —1 < s < 1, and

for all £ € N,
po L [ade
21 J, z— 8

Then, using Fubini’s theorem, for all s € R? such that —1 < s; < 1, and for all
1y yin € {1,...d},

S;. = =
1 Z (27TZ)d yxd

J J

Zi:

n
%
Sl

dz; dzy
21— 81 24— Sd

Finally,
M

d n
= Y IIslee - eafis - of

1 - dz dzy
- : Z (27Tl>d /XdHlezl_Sl Zd_5d|€“® ®€7/n><f21® ®fzn’
21,eeytn=1 7T =1
1 dz dzg
- n 000
(27Ti)d xd 21,--,2d 21 — 51 g — Sd’
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where Ug”f“ 2

is the n-fold unitary matrix defined by

d
Unosa = 3 21Xl
=1l

Corollary. The space of n-fold tensors over C¢ decomposes under the action of
the direct product group Uy X &,, as follows :

(Cd)@m ~ @ Ve ® V.
N

2.3.3 Others Schur-Weyl duality

Schur-Weyl duality for P,

The symmetric group &y acts on the d-dimensional complex vector space C?
by considering the mapping ¢, called permutation matrix, from &4 to My, and
defined for each permutation ¢ by,

1 ifi=o(y)
(6(p)),,; = .
J 0 otherwise,
To be explicit, given a basis ey, ...,eq of C¢ and vector v = Z'Z:l v; }ei> in C?, a

permutation o € G, acts on v by
d
o(o)-v= ngfl(i) |ei> )
i=1
This action extends diagonally to an action on the d"-dimensional tensor product
complex vector space ((Cd)®n, defined for ¢ € &4 on tensor v ® -+ ® v, € (Cd)®n
by,
$o)" - (@ @vn) = p(0) 01 @+ @ P(0) - U,
and extended linearly.
Let A and B be the matrix algebras generated, respectively, by the actions of
the partition monoid P,, and the symmetric group &4, on the d"-dimensional tensor
product complex vector space ((Cd) ®n, ie.

A = Spanc {¢(p) | p € P, }
B = Spanc {¢(0)*" | 0 € &4} .
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Theorem (|MR98; Mar00; HRO05]). Both A and B are commutants of each
other.

Schur-Weyl duality for U,

Let diag. U, be the subgroup of Uy, consisting of d x d diagonal unitary ma-
trices acting on C?. That is for all U in diag. Uy, there is # € [0, 27)? such that,

U= diag(ewl, ceey eied).

As subgroups of Uy, the action of diag. U, extends diagonally on the d"-dimensional
tensor product complex vector space (Cd)®n.

The product of a diagonal unitary matrix U = diag(e,..., ) in diag. Uy,
and a permutation matrix ¢(o) for some o € &4, is a monomial matrix in [0, 27),
i.e. a permutation matrix whose nonzero components are in [0, 27) :

(U . qﬁ(a))i’j = {0

Let A and B be the matrix algebras generated, respectively, by the actions of the
uniform block permutation monoid U,, and the monomial matrices in [0, 27), on the

otherwise,

d"-dimensional tensor product complex vector space ((Cd) ®n, ie.
A = Spanc {¢(p) | p € U, }
B := Spang {U®" - ¢(0)®" | U € diag. Uy and 0 € &4} .
Theorem 2.4 (|[Tan97|). Both A and B are commutants of each other.

Schur-Weyl duality for B,

Let O, denote the ortogonal group of degree d, which consists of the d x d
orthogonal matrices acting on C?. As subgroups of Uy, the action of Oy extends
diagonally on the d"-dimensional tensor product complex vector space (Cd) o

Let A and B be the matrix algebras generated, respectively, by the actions of
the Brauer monoid B,, and the orthogonal group O,4, on the d"-dimensional tensor
product complex vector space (Cd) ®n, ie.

A = Spanc {¢(p) | p € B, }
B := Span {O®" ’ ONS Od} :

Theorem (|Bra37|). Both A and B are commutants of each other.
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Schur-Weyl duality for B, ,

Let the action of the complex general linear group GL; on the d™-dimensional
mixed tensor product complex vector space ((Cd) ) (Cd) ®m, defined for M € GLg4

by,
®Xn

M@m ® ((Mfl)T)
As a subgroup of GLg, this action is defined for U € Uy by,
U™ e U®".

Let A, B and C be the matrix algebras generated, respectively, by the actions
of the walled Brauer monoid B,,,, the complex general linear group GL,; and the
unitary group Uy, on the d"-dimensional mixed tensor product complex vector space

(CH™", ie.
A = Spanc {¢(p) | p € B}
B = Span,. {M®m ® <(M_1)T>®" ‘ M e GLd}
C = Spanc {US™" @ U™ | U € U,} .

Theorem (|Ben+94|). Both A and B (or C) are commutants of each other.

Remark. Tt is important to note that the various Schur-Weyl dualities presented
in Section 2.3 are given only in terms of the matrix algebras generated by the map
1, rather than the diagrammatic algebras. The map 1 may not always exhibit
faithfulness.
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This chapter provides a comprehensive overview of the mathematical foundations
of quantum mechanics in the context of quantum information theory, focusing on the
postulates of quantum mechanics and their inherent probabilistic nature.

In quantum information theory, the attention is mainly directed to quantum
systems with a finite number of degrees of freedom.

First, the formalism of pure quantum states is introduced, which is particularly
suitable for closed quantum systems. Then then formalism of mixed quantum states
is then introduced, in particular to describe open quantum systems that interact
with an environment that is not intended to be described.

References for the different postulates and the mathematical foundations of quan-
tum mechanics can be found in the textbooks [Wat18; NC02; AS17].

3.1 Postulates of quantum mechanics

Let H := C? be a finite d-dimensional Hilbert complex vector space. The convex
set of unit trace, positive semi-definite d x d matrices, acting on H is denoted,

D,,::{peMd‘TrpzlandeO}.

An element of Dy is called a density matrix, to highlight the fact that its eigenvalues
represent a probability distribution. The extremal points of D, are the unit rank
projections WX@D‘, for some ¢ € ‘H with ||| = 1.

Definition. A quantum system is represented by a finite d-dimensional Hilbert
complex vector space H.

Let H := C? be a finite d-dimensional Hilbert complex vector space, the compu-
tational basis of the quantum system # is denoted :

0),...,

Definition. A composite quantum system is represented by a tensor product
of Hilbert complex vector spaces Hi ® -+ ® H.,.

d—1).

The computational basis of the n-fold composite quantum system H®", with the
finite d-dimensional Hilbert complex vector space H = C, is the set :

{li)®- & in) |1, in €{0,...,d = 1}}.

3.1.1 Pure states
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I Definition. A pure quantum state on H is an extremal point of D,.

, for some

A pure quantum state on H := C? is a unit rank projection |1/J><¢
vector ‘@/}> =« ‘O> + /- {1> with «, 3 satisfying,

jaf” +18]* = 1.

Remark. In the following the description of a pure quantum state as a unit rank
projection WXM or as a unit norm vector |2/1> is used interchangeably. Note that
WJX’(M is simply the orthogonal projection onto the complex line spanned by ‘@Z)>

Definition. The evolution of a pure quantum state p on H is governed by a
unitary matrix U on H, through the conjugation mapping

p+— UpU~.

The evolution of pure quantum states is a transitive action : for all pure quantum
states p and o there exists a unitary matrix U such that p = UcU™.

As a unit norm vector }w>, the evolution a pure quantum state, through a unitary
matrix U, is given by |w> — U ‘1p>

Definition. The projective measure of a pure quantum state p on H is des-
cribed by a set of orthogonal projections {P,..., P,} on H, which sum to the
identity. The outcome of the measure is i € {1,...,n} with probability,

Tr [PpF;].
and the resulting pure quantum state after the measure becomes,
PipP;
Tt [PpP;]
Let W> = Q- ‘O> +5- |1> be a quantum pure state on H = C2. A projective
measure in the computational basis {0> , |1> is described by the two orthogonal pro-

jections ‘O><0| and ‘1><1|, and yields outcome 0 with probability |«|* and outcome 1
with probability |3|%.

Remark. In the context of a projective measure, due to the orthogonality pro-
perty of the projections {P, ..., P,}, and the cyclic property of the trace, the
probability of the outcome i given a pure quantum state p = ‘¢><¢| is just
Tr [Pip] = <¢‘ P, |¢>, and the resulting pure quantum state after the measure
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becomes,
PipP;

(W] Pi|v)
Let p = pa ® pp be a pure quantum state on H4 ® Hp, a composite quantum

system. The projective measure of p described by the set of orthogonal projections
{Py,...,P,} on Ha® Hp, yields outcome i € {1,...,n} with probability

Tt [Pp] =Tra | P Tep (L4 @ pi] pal

M;

=Tr [szA]a

for some positive semidefinite M; on H4 ® Hp, which sum to the identity. Such a
measure on part of a composite system is called a generalized measure.

3.1.2 Mixed states

Let p = ‘¢><¢| be a pure quantum state on Hy ® Hp, a composite quantum
system with H 4 := C? and H  an unknown quantum system. The projective measure
of p described by the set of orthogonal projections {Pi, ..., P,} on H4 only, yields
outcome ¢ € {1,...,n} with probability

(@] (P In) [0) = Tra [P Tep [p] |
——
="Tr [Pia},
for some o € D,, which is in general not a pure quantum state.
| Definition. A mixed quantum state on H is an element of Dj.

Since the set of mixed quantum state D, is a convex set, and since the extremal
point are the pure quantum states, a mixed quantum state is a convex combination
of pure quantum states, of the form,

k
Zpi ’ |1/1i><¢z'| )
i=1

with some positive real numbers p; satisfying Zle p; = 1,and |wi><wi| some unit rank
projections. From the spectral Theorem, a mixed quantum state on Dy is a convex
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sum of at most d terms. The most central element of D, is the mixed quantum state
I:= % called maximally mixed.

As a fundamental consequence, optimizing a convex function or minimizing a
concave function over the set D; of mixed quantum states will lead to extremal
values of the function on a pure quantum state.

In the case H = C2, the mixed quantum states D, can be written in a spherical
representation, called Bloch sphere,

1
D,y = {5(12 + 1y Op 1y 0y + T 0,) | T = (T, Ty, T,) € R? and Ir| < 1},

where 0,,0, and 0. are the Pauli matrices defined by

(01 (0 —i /10
9= =\1 0 b=\ o0 %= \o -1/

The pure quantum states of Dy are the elements satisfying ||r|| = 1.

3.2 Quantum entanglement

The quantum entanglement is a fundamental concept in quantum information
theory that refers to the non-classical correlations that exist between two or more
quantum systems.

3.2.1 Schmidt decomposition

Recall the singular value decomposition (svD) for a matrix M € M, acting
on C? : there exists two orthonormal bases e;,...,eq and fi,..., f; for the vector
space C?, and d non-negative real numbers s, ..., sq, such that,

d
M= sile)fil
=1

Using the isomorphism Hom(V, W) ~ V ® W between two finite dimensional
complex vector spaces V' and W, the singular value decomposition becomes the
Schmidt decomposition of vector on a bipartite tensor pridcut V @ W.

Theorem (Schmidt decomposition [Sch07; Eve57]). Let ¢ be a vector in a bi-
partite tensor product of d-dimensional Hilbert complex vector spaces Hyi ® Hs.
Then there exists two orthonormal bases ey, ... ,eq and fi, ..., fq for Hi and Hs,
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respectively, and d non-negative real numbers sy, ...,sq called Schmadt coeffi-
cirents, such that,

d
¢:Zsi'€i®fi-

i=1
The number of nonzero Schmidt coefficients is called the Schmaidt number.

Apart from the bipartite scenario, direct multipartite extension of the Schmidt
decomposition does not exist in general [Per95].

3.2.2 Pure quantum state entanglement

A bipartite pure quantum state |w> on Ha ® Hpg is said to be entangled if its
Schmidt number is strictly greater than 1, otherwise it is said to be separable and
can be written,

W> - |¢>A ® |¢>B’

for some |¢>A € Hy and ‘@/}>B € Hp.

The Schmidt number of a bipartite pure quantum state gives a canonical quan-
titative measure of entanglement.

A bipartite pure quantum state w = SZXSZ{, on the 2-fold composite quantum
system H ® H, with H ~ C¢, is called maximally entangled if it has, on the
computational basis, the form

1 d—1 -
|Q>:7E;’”>-

The partial transpose of an unormalized maximally entangled pure quantum state
d - w is the flip operator,

d—1
d-w' =" |ij)ij],
i,j=0
on the computational basis. On product vector x ® y, the flip operator acts through
d-w'(r®y) =y ® . However, since y ® x —x ® y is a eigenvector for the negative
cigenvalue —1, the flip operator w' is not a quantum state. The normalized flip
r
w

operator on Dy is denoted [ := “-.

Theorem (PPT criterion [Per96; HHHOL]). If p is a separable bipartite pure
quantum state on Ha @ Hp, then the partially transposed p' is a quantum state.
The converse is true if and only if dimH 4 X Hp < 6.
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In general, in the multipartite scenario H; ® - - - ® Hj, a pure quantum state ‘@Z)>
is separable if it can be written as a product vector

[0) = [¥1) ® - ® [v),

and entangled otherwise.

Remark. As a unit rank projection WXM, a separable pure quantum state on a
multipartite H; ® - - - ® Hy can be written

W><¢| = |1/11><”¢1‘ ®- & |¢k><1/1k‘ .

3.2.3 Mixed quantum state entanglement

A mixed quantum state is said to be separable if it can be written as a convex
combination of separable pure quantum states. Therefore the convex set of separable
quantum states on H; ® - - - ® Hy, is

Conv { |1 Xth1| @ -+ @ [ Xbx| - 00 € H; for all i € {1,...,k}},

with extremal points the separable pure quantum states.
An isotropic state is a convex combination of a maximally entangled and maxi-
mally mixed quantum states :

p=A-w+ (1 =N,

with 0 < A <1 and w,I € Dp. If d2__—11 < A <0, then p is still in D, and thus still
a mixed quantum state.

A Werner state is an affine combination of a normalized flip operator and
maximally mixed quantum states :

c=A-F+(1-N]I

with ﬁ <A< 1—0%1 and F,1 € Dgp.
Any isotropic state p and Werner state o satisfy the following commutation rela-
tions :

0, U@ U] =0 and o, U® U] =0,
for all unitary matrices U.
Theorem ([HH99|). Let p == X-w+ (1 = A)I be an isotropic state on Dgz. Then

p 1s separable if and only if A < ﬁ.
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Theorem (|Wer89]). Let 0 .= A-F + (1 — X\)I be a Werner state, on Dg2. Then

o s separable if and only if A > 1fd2.

In general, deciding whether a given quantum state is separable is known to be
NP-hard [Gur03].

3.2.4 Monogamy of entanglement

A bipartite quantum state p on H 4 ® Hp is said to be k-extendible, with respect
to H p if there exists a quantum state o on H, @ H$S* such that for all i € {1,..., k} :

p="Trp,, BB} [U}'

Theorem (Entanglement hierarchy [DPS04]). A bipartite quantum state p on
Ha ® Hp is separable if and only if it is k-extendible for all k € N.

Let pa p,c be a tripartite quantum state on Hy @ Hp®@He with Hy ~ Hp ~ He,
and such that the reduced quantum state on H4 ® Hp,

pap = Trclpascl

is maximally entangled, i.e. p4 g = w. From the spectral Theorem, the quantum state
PA,B,c is a convex combination,

Y

k
PABC = Zpi ' |¢i><¢i
=1

for some orthonormal pure quantum states |2/)z> on Hy®Hp®Hc. Then the reduced
quantum state ps g becomes

PAB = Zk:pl- -Tre [W@><¢1| }
=1

But since p4 p is a pure quantum state, i.e. pa p = !QXQ! is an extremal point of the

convex set of density matrices, every Trg [ |¢i><¢i| } in the sum must necessarily be

equal to py p. This implies that pa pc = pa,p ® pc, for some reduced quantum state
pc on He. Thus none of the reduced quantum states p4 ¢ and pp o can be maximally
entangled. This phenomenon is known as monogamy of entanglement.
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3.3 Quantum channels

Let & : My — My be a map such that CD(Dd) C Dy, i.e. mapping d-dimensional
quantum states to d’-dimensional quantum states. Under linearity assumption this
is equivalent to :

— @ positive: X >0 = &(X) > 0.

— & trace preserving : Tr X = Tr &(X).

The transpose of a matrix is a linear map that satisfies both positivity and trace
preserving properties. But when partially applied to a composite quantum system,
this can lead to non-quantum states, e.g. the partial transpose of a maximally en-
tangled pure quantum state is the flip operator F' = w'.

A linear map ¢ : My — My is called completely positive if all the partial
applications of ® on any positive semidefinite matrix results in another positive
semidefinite matrix, i.e. VD e NM;@Mp 353X >0 = (P®idp)(X) > 0.

Definition. The most general transformations of quantum states, called quan-
tum channels, are the Completely Positive Trace Preserving (CPTP) linear
maps.

3.3.1 Structure of quantum channels

The Choi matrix of a linear map ® : My — My is the matrix Cy in Mgya,
defined by,

Co = (ids @) (é [ X33 )

= (idd ®(I))(d . w).

It is possible to retrieve the original linear map ¢ from its associated Choi matrix
Cs using the formula,
O(X) = Trq [Co(XT @ Iy)].

Theorem 3.1 ([Watl8]). Let ® : My — My be a linear map. The following
are equivalent :

— the map ® is CPTP;

— the Choi matriz Cs is positive semidefinite and Try [C@} =14
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— there exist Ay, ..., A € Maxa such that,
k k
O(X) = AXA; and ST AA =1y
=1 i=1

— there exist D € N and an isometry V : C* — C¥ @ CP such that,

®(X) =Trp [VXV*].

3.3.2 Compatibility of quantum channels

Let ® : My — ME" be a quantum channel from 1 to n quantum states, the i-th
marginal of ®, denoted ©; is defined by,

Oy(X) = Trpwp gy [P(X)].

A marginal of a quantum channel is also a quantum channel.

Let ®; : My — My, be a family of £ quantum channels. The quantum chan-
nel compatibility problem consists in determining whether there exists a global
quantum channel ¥ : M; = My ® --- ® My, compatible with all the ®;, that is,

\Iji - q)ia

for all marginals W;.

I Remark. Quantum channels can be incompatible with themselves.

3.4 Quantum fidelity

The quantum fidelity is a measure of the closeness between two quantum states
p and o, defined as the function /" on Dy x Dy by,

Fipo) = | ﬁpﬁr.

Proposition 3.2 (|Wat18|). The quantum fidelity F' between two quantum states
has the following properties :

T F(p70) = F(O’,p) ’

— F(p,0) €10,1];

— F(p,o)=1<=p=o0;
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— Fpu)el) = (wlofe) = [ploxul]

— F(UpU*, UUU*) = F(p,0), for all unitary matrices U ;
— FE@(p), ®(0)) > F(p,0), for all quantum channels ® ;
— F is jointly concave, i.e. for all X € [0,1],

FEX-pi+(1=X)p2, X014 (L= N)o2) = X-F(p1,01) + (1= X) - F(p2, 02).

3.5 Graphical calculus

The present Section introduces a graphical calculus for tensors, which is built
upon the graphical notation developed by Penrose [Pen71|. Recently, analogous cal-
culi have been formulated within the tensor network states framework and the frame-
work of categorical quantum information theory, which are elaborated in [WBC15;
BC17; CK17]. The graphical calculus introduced here is consistent with the tensor
representation of a diagram algebra, introduced in Section 2.2.

In this graphical notation, tensors are represented by boxes and wires,

T

More specifically, the wires are labeled by indices, such that a box represents the
value of the tensor at the given indices,

In particular, a vector is a box with only 1 wire pointing to the left, and labeled by
the index of the coordinate. A dual vector has its wire pointing to the right,

i 1

Note that these left and right directions are just a convention corresponding to the
usual right-to-left composition in linear algebra.
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The tensor diagrams can be combined in two ways. The tensor product com-
bines two diagrams vertically

A

A®B =

B

or horizontally, with the isomorphism Hom(V,W) ~ V* @ W between two finite
dimensional complex vector spaces V' and W,

The operation of joining together two diagrams by one of their wire labeled with
the same index corresponds to multiplying the values of the two tensors at the given
indices,

UiV =| U [ V)

The tensor contraction combines two diagrams using the previous operation by
taking the sum over all common indices

2
A B

In particular, this leads to the scalar product,

<u,v> =| U v

the matrix product,
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and the matrix trace,

TrT:: T:

Scalars multiply diagrams and are depicted next to them. The following three special
tensors of C?, important in quantum information theory, have wire-only diagrams,

[— )= 4 ) O

Finally, the matrix transpose can be graphically depicted by swapping the input
and the output wires of a box depicting a matrix. The partial transpose permutes

just the wires of the corresponding spaces,

_Tr_: T
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The present Section discusses the results of the papers “A geometrical description
of the universal 1 — 2 asymmetric quantum cloning region” [NPR21], and “The
asymmetric quantum cloning region” [NPR22|.

The problem of quantum cloning has received considerable attention over the last
thirty years. This area of research began with the early investigations of universal
quantum cloners [BH96] and has since expanded to include various cloning scena-
rios : symmetric [Wer98 ; KW99|, asymmetric [Cer98 ; FFC05], qubits [GMI7], qudits
[Cer00], universal [Bru+98; IAGO6 ; Ibl405], equatorial [Bru+00; DMO03; DDO04b],
economical [DD04a; DFC05], probabilistic [DG98; DGI8|, continuous quantum sys-
tems [Cer+04; Cer+05].

Of particular interest are two sets of papers dealing with the most general case
of asymmetric universal 1 — N quantum cloning problem. The first set of papers,
by Kay and collaborators, deals with the optimisation of this problem [KRK12;
Kay14; Kayl6]. The second set of papers, by Cwikliriski, Horodecki, Mozrzymas,
and Studzinski, uses techniques from group representation theory [CHS12; SHM13;
MHS14; Stu+14; MSH18|. Of particular relevance is the paper of Hashagen on the
asymmetric univeral 1 — 2 quantum cloning problem [Has17|, which focuses on
different figures of merit.

4.1 Quantum cloning problem

The problem known as the quantum cloning problem aims to identify a speci-
fic quantum channel, called the quantum cloning channel, denoted by ® : My —
(Md)®N, which maps an input pure quantum state to an output mixed quantum
state on a N-fold composite quantum system, such that the output marginals of ¢
are as close as possible to the input. To achieve this, a direction vector denoted a
satisfying a € [0, 1] and Zfil a; = 1, together with a subset [" of the pure quantum
states, are introduced. The quantum cloning problem is defined as the optimisation
problem given by,

sup iai~ IEEF [F(@i(p),p)},

® cpTP i—1 p
where the expected value is taken with respect to the uniform measure on I'.

Remark. The quantum cloning problem belongs to a more general class of quan-
tum marginal problems, which includes the quantum state marginal problem
[Haa-+21], the quantum channel marginal problem [HLA22|, and the quantum
measurement marginal problem [LN21].
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The no-cloning theorem states that a perfect quantum cloning channel, i.e.
a quantum channel with marginals the identity quantum channels, cannot exist in
general. Indeed, a linearity argument shows that, if ’O> s ‘d — 1> is the computa-
tional basis of C%, and U € Uz is a unitary matrix such that on this basis,

Uli) @ |v)y = i) @),
Then U is a perfect quantum cloning unitary for this basis, given an auxiliary pure

quantum state ‘U> But if W> = w for distinct 4,5 € {0,...,d — 1}, then,

U ) & [v) = i) ® V>;§U>® 1)
# ) @ [¢).

Many quantum cryptographic schemes rely on the existence of the no-cloning
theorem [BB84; BL20).

Theorem 4.1 (No-cloning theorem [WZ82; Die82|). For any subset I of the

pure quantum states, there is no quantum cloning channel ¥ : My, — (./\/ld) on
such that for all pure quantum states p € I' and all marginals V;,

unless I' is a set of mutually orthogonal pure quantum states.

Remark. A perfect quantum cloning channel ¥ : My — (./\/ld)®N has margi-
nals ®; of the form ®; = id; the identity quantum channels, and Choi matrices
Cp, = d - w an unormalized maximally entangled quantum state. The no-cloning
Theorem 4.1 is a reformulation of the monogamy of the entanglement, and the
fact that there is no quantum channel compatible with the identity quantum
channels.

A generalisation of the quantum cloning problem can be considered given a quan-
tum cloning channel  : (/\/ld) oM (/\/ld) ®N, which maps an input pure quantum
state as an identical product state on a M-fold composite quantum system, to an
output mixed quantum state on a N-fold composite quantum system,

sup ZN: a- E [F <CI>i (p®M),p>] .

d cpTP i—

Even with M identical copies as input, the no-cloning theorem hold.
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Theorem 4.2 (M — N no-cloning theorem [Wer98|). For any subset T' of the
pure quantum states, there is no quantum cloning channel ® : (./\/ld)®M —

(./\/ld)®N, with M < N, such that for all pure quantum states p € T' and all
marginals V;,
CI)Z' (P®M) =P

unless ' is a set of mutually orthogonal pure quantum states.

It is important to note that the quantum cloning problem and the 1 — N no-
cloning Theorem 4.1 and M — N no-cloning Theorem 4.2 are states on pure states
only. When mixed states are considered, the problem becomes the quantum broad-
casting problem, and the equivalent no-broadcasting theorems do not hold in the
same generality.

Theorem (Superbroacasting [DMPO05]). For 0 > M > N large enough, there

exists a quantum channel ® : (J\/ld)®M — (/\/ld) N such that for all 2-
dimensional mized quantum states p € Dy, where p = %([2 +1y- 05+ Ty 0y +T,0,)
and ||r|| small enough, and for all marginals ®;, the quantum mized state,

0= (I)Z (P®M) )

commute with p, i.e. they are collinear in the spherical representation,

1
D2:{5([2+Tx'az+7’y-ay+7’z~az)

7= (ry, Ty, Ts) € R? and ||r|| < 1},

From Proposition 3.2 and the joint concavity quantum fidelity, given two quantum
cloning channels ® and ¥ from M, to (/\/ld) ®N, then for all subset I" of the pure
quantum states and for all 1 <7 < NNV,

P00 )

Ever |F(®:(p),0)] +Eper [F(¥i(p).p)]
: .

2

E

pel’

>

Hence, in order to address the quantum cloning optimization problem, the approach
would be to identify the largest uniform sum of quantum cloning channels.

Let I' be a subset of the pure quantum states, and G be a compact subgroup of
the unitary group Uy acting on C¢, such that for all p € I and for all M € G,

MpM* €T.
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The twirling of a quantum channel ® : M; — (/\/ld) ®N, with respect to I' and G,
denoted @, is defined for all p € I" by

B(p) = /G (a) Y (@ (MpM*) ) MEN A,

where the integral is taken with respect to the normalized Haar measure on the group
G. Then for all 1 <7 < N,

E |F(®i(p).0)| = E [F(@i(p). )]

pel — per

The approach would be to consider the largest group G. In particular the partially
transposed Choi matrix C’(% is in the commutant of G.

Proposition 4.3. Let " be a subset of the pure quantum states, let G be a
compact subgroup of Uy, and ¢ : My — (./\/ld)®N a quantum cloning channel. If
O s the twirling of ® with respect to I' and G, then for all M € G,

O MEe]

Proof. Since G is a subgroup of Uy, for any M in G, the following two equalities
hold,

(M®M)|Q) =) and Q] (MT e M*) =(Q|.
Then for any M € G,
_ r
CL = <(idd®<1>> (d-]|Xe| ))
-
= ((idd %) (d(1 @ M) |aXQ| (M7 @ M*))) .
From the definition of the twirling CTD, then for all M € G and for all p € T’
& (MpM*) = MY (B(p)) (M*)*".

Then the following commutation relation on the partially transposed Choi ma-
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trix C(% holds for any M € G,

cr = ((M@M‘@N)((idd@&)) (d- QX0 )) (MT® (M*)®N>>F
_ (M & M) ((idd®<§> (d- |aXQ) ))F(M* ® (M*)®N>

— (M & M) CE(M* @ (M7)*").
That is [CF, M®N+D] = 0.

Corollary 4.4. Let I' be a subset of the pure quantum states, let G be a compact
subgroup of Uy, and ® : My — (./\/ld) Ny quantum cloning channel. If ® is the
twirling of ® with respect to T’ and G, then for all M € G and alli € {1,...,N},

[Ogi, M®?] =0.

Remark. The importance of twisting a quantum channel is twofold : first, it allows
to improve the performance of the quantum channel with respect to the optimiza-
tion problem, and second, it allows to simplify the optimization problem through
the induced symmetries. The study of optimization problems under symmetries
has been the subject of substantial work [FST22; GO22].

4.1.1 Universal quantum cloning problem

When the subset I' of the pure quantum states is the full set of pure quantum
states, it can choosen the subgroup G of U, to be the full unitary group. The quan-
tum cloning problem becomes the universal quantum cloning problem Then
from Proposition 4.3, the partially transposed Choi matrix C’(% of a twirled quantum

cloning channel ® commutes with all the unitary matrices U?™+D  ie. it is in the

commutant of the algebra
Spanc {USWHY | U € Uy} .

From Theorem 2.3.2 and Theorem 2.3, the partially transposed Choi matrix Cg
is in the algebra

Spanc {¢(0) | o € Gy}
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That is, it exists a family of complex numbers ¢, indexed by the permutations of

GN—H such that
Cs = Z ¢ (o)

c€EGN 11

Therefore, the Choi matrix Cj is a sum of partially transposed tensor represen-
tation of the symmetric group Gy.1. Hence, a sum of partially transposed tensor
representation of the symmetric group Gy is a Choi matrix of a quantum channel
if both the positivity and the trace conditions of Theorem 3.1 hold. These condi-
tions depend on the (N + 1)! coefficients, and in particular it does not depend on
the dimension of the quantum system. Recall from the Stirling’s formula that the
asymptotic growth of the factorial function is,

nl ~ 27m<2>n.

e

From Proposition 4.3, the partially transposed Choi matrix Cj of each marginal
&)i has the form

C5, =i 0 ((D2) + - ((12)'
e s (<))
—een (20 (DC)

for some complex numbers «; and ;. For all p € I", the marginals CT% on p are
;(p) = Tryoy [CEISZ. (p" ®14)]
r r
= a; - Tr{oy [¢((1)(2)) (p ® Id)] + Bi - Trioy [w((l 2)) (P ® Id)]
=a; Lo+ Bip,

and the fidelity F(®;(p), p) becomes,

F(®:(p), p) = Tr | (Bi(0)) ]

=Tr |C5, ((pT - p) ® [d>]
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— ;- Tr [w((l)(Q))r(p ® Id)} + ;- Tr [w(u 2)) (p® fd)}
=d-a; + b

4.1.2 Equatorial quantum cloning problem

Recall that in the case H = C2, the pure quantum states can be written,
1
§(I2+Tm 'O-:B_'_ry 'O-y—i_rz 'Uz)v

with 7 = (r4,7,,7.) € R* and ||r|| = 1, and thus are isomorphic to the unit sphere
in R3. The equatorial pure quantum states are the pure quantum states located
on the x — y equator of this sphere, i.e. r, = 0. The equatorial pure quantum states
are of the form,
et ‘O> + e }1>
\/§ )

for some 6 € [0,27)%.

Remark. The 4 states used in the BB84 protocol [BB84] are all in the x — 2
equator, and the two equators © — y and x — z are connected by a change of
basis.

When the subset I' of the pure quantum states is the set of states of the form,

1 d—1
— 'O !k:> ,
Vi

for some @ € [0, 27)¢, the subgroup G of Uy can be chosen to be the group of monomial
matrices in [0, 27). The quantum cloning problem becomes the equatorial quantum
cloning problem. Then from Proposition 4.3, the partially transposed Choi matrix
C’&'; of a twirled quantum cloning channel ® commutes with all the diagonal unitary
matrices U®NF1 and all the tensor representation of permutations 1 (o)*™+Y, je.

it is in the commutant of the algebra
Spang {U®" - ¢(0)®" | U € diag. Uy and 0 € &4} .

From Theorem 2.4, the partially transposed Choi matrix C’g is in the algebra
Spanc {¢(p) | p € U, } .
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That is, it exists a family of complex numbers ¢, indexed by the uniform block
permutations of Uy, such that

05: Z Cp'@D(P)r-

peEUN 41
From Proposition 4.3, the partially transposed Choi matrix C_ of each marginal
ZI% has the form

Cy, = ;- (13]24) + 8- (14]23) +7;-0(1234)'
S bl RS RS 1
“eo (D) e (D) e (CHY)

for some complex numbers «;, 8; and ;. For all p € ', the marginals ®; on p are
®;(p) = Tryoy [C5, (0" ® 14)]
= Tryg, [(a p(13]24) 4+ 8- p(14]23) - ¢(1234)r> (,0®Id)]

= Ig+ Bi- p+ i - diag(piy, - - -, Paa)
=a; - La+Bi-p+yi- L,

and the fidelity F (CIDi(p), p) becomes,
F(®i(p),p) = Tr | (®:(p))]

=Tr |y, (p @ 1) |

= Tr <ai.¢(13|24)r+5i.¢(14|23)r+%.¢(1234)r>(p®[d)}
Zd't;éi‘l'ﬁi‘i‘%'-
4.1.3 Average vs. worst fidelity

In Section 4.1.1 and Section 4.1.2, the marginals ‘5@ and \Tl, of a twirled quantum
cloning channel ® for the universal quantum cloning problem and a twirled quantum
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cloning channel U for the equatorial quantum cloning problem, were shown to be,
on all p € I', some linear combinations of the trace, identity maps. Using the trace
preserving property of quantum channels, the marginals becomes on all p € ', some
affine combinations

- I -

1
Ci(p)=p-p+(1-p)5  and \I/i(p)ZQ'P+<1_Q)Eda
for some p, ¢ € R, and with fidelities F(EI;Z(p), p) and F(\Tfl(p), p),
= l—p = l—q
F(®i(p), p) :]9‘1‘7 and F(Wi(p), p) ZQ+T’

In particular, none of the fidelities depend on the quantum state. Hence both opti-
mization problems,

(average) @SLJIEP;CL gt (®i(p), p)
N

t - inf [F(@i(p), p)]

(worst) qﬁégipgi;tl inf | F(®:(p), p)

are equal on universal and equatorial I’s. However, the expectation value will be
more convenient to manipulate, especially for to determine an upper bound.

4.2 Upper bound

This section is dedicated to the determination of an upper bound for both the
universal and equatorial quantum cloning problems, given a direction vector a €
[0, 1]". For all quantum cloning channels ® : My — (./\/ld) ®N, and for all subset I'
of the pure quantum states,

N

S o B [F(®:(p),0)]

er
1=1 r

Il
&
&=

@
Il
—

£ :(@(p))p]]

pel’ i

[
e
&=

@
Il
—_

_TY:(¢(p»(P@)@9L?UV_D)]]

pel’ L

[
e
&=

s
Il
—

& [Ca ol @00 @ 157Y)]|

pel’
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i“% T{ ( [P(o>®p(>]®f§?w_”>}-

=1
Theorem 4.5. For any direction vector a € [0, 1]V the universal quantum cloning
problem 1s upper bounded by

sup f:a E [F(q%(p)vp)} <

$ cpTPp pel
=1

A7nax(}%a)
d+1 7

where Apaz(Ra) 1s the largest eigenvalue of the matriz

2{:‘11 Oz + d QJOZ ) QbAL?(Aﬁil%

with quantum states Lz and w ), respectively maximally mized and mazimally
entangled, between between the 0-th and i-th quantum systems.

Proof. Let VVCY be the symmetric subspace of ((Cd) N defined by
vN¥C? = Spang {U®N | v E (Cd} :

It is well known [Har13] that VVC? is an irreducible representation vector space
for the representation U — U®Y of the unitary group Uy. Since the pure quan-
tum states I' are generated by the unitary matrices, i.e. I' ~ {UpU* ’ Ue Ud}
for any pure quantum state p, then

i
E ot ® p0] = ( E, [0 ® p0]])

pel’ pel’

(frees)
= </UdU\o><o|U*®U\oxo|U* dU>r.

Note that the integral, before taking the partial transpose, commutes with all
the unitary matrices U ® U and lives in End( V2 (Cd), by Schur’s Lemma it must
be a multiple of the identity in V2C?. The identity of the bipartite symmetric

subspace is
(D) +¢((12)
5 :
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The unit trace condition, together with the partial transpose, give

(@) +v((12)"

plgr[p@)p}: d(d+1)
Ty +dwey
dd+1)

Finally the universal quantum cloning problem becomes

N
w3 e B [F(@:(p). )
N
= q)sup a; - Tr {Cq)( E [p(TD) ® p(i)} ® I;g(Nl))}
CPTP -1
Tr [C@Ra)
= sup

B ¢ cpTP d(d+ 1) .

Then from the inequality Tr[C'R] < Tr[C] - Amax(R) that holds for any positive
semidefinite matrix C' and symmetric matrix R, and the equality Tr [C(p} =d
for any Choi matrix C of a quantum channel & : M; — My,

Tr [CoR,] Tr [Co ]
—— < —)\max a
S I S S gy e fe)
. >\max<Ra)
d+1

Remark. The upper bound in Theorem 4.5 is a special case of the result of Jaromir

Fiurasek on the extremal equation for optimal completely-positive maps [Fiu01].
The spectrum of the matrix R, has been considered in a recent series of papers
for the port-based teleportation protocol [Stu+17; Moz+18; Led22|. In particular,

in [Chrt21, Lemma 3.6], all the eigenvalues of the operator R,, up to shift factor,

are given in the special case of a = %(1, 1.

Theorem 4.6. For any direction vector a € [0,1]Y the equatorial quantum clo-
ning problem is upper bounded by

N
Amaz(Ra)
@Sg}g}a;ai B [F(q%(p),p)} <=



where Apaz(Ra) is the largest eigenvalue of the matriz

N
R, = Z a; - (d2 . I(OJ) +d- W(o,i) + d - X(Q@) X ]®(N_1),
i=1
with quantum states Lz and w ), respectively maximally mized and mazimally
entangled, between between the 0-th and i-th quantum systems, and quantum state

X(0,5) defined by

Y

=
Xi== ZO | Y4
between between the 0-th and i-th quantum systems.

Proof. Let ‘+> be the pure quantum state defined by ‘+> = \/LE Z;;i:_ol z'>, then
for any pure quantum state ‘@/}> e I, i.e., of the form \/ia Zz;é ek }k>, there
exists a diagonal unitary matrix U in diag. Uy such that }@Z)> =U ‘—|—> Then

]E T ) — T
E [p(0) ® P&)] /F p' ®@pdp

_ 7 T *
_/iiag.U\+><+|U ® U |+X+|U* dU.

Ug

Using integration over random diagonal unitary matrices [NS21],

/ T [+X+| U o U |+ Y+ v dv = L lon+d-woy +d- Koy
diag.

P
Uqg
Which leads to the upper bound,
N
Amax(Ra)
- E [F@i : ]<—.
@Sggp;a pel ( (p) p) o d

Remark. For both the upper bounds in Theorem 4.5 and Theorem 4.6, the iden-
tity terms in the matrices R, only lead to a shift in the largest eigenvalues
Amax (Ra)-
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4.3 Universal 1 — 2 quantum cloning problem

This section is devoted to the universal 1 — 2 quantum cloning problem, in the
general case of quantum systems of arbitrary dimension [NPR21]. The problem is
studied from the following perspective : given some target pair of fidelities (fi, f>),
does there exist a quantum cloning channel ® from M, to (./\/ld)®2, such that
F(Cbi(p),p) = f; for all pure quantum state p. As seen in Section 4.1.3, by twir-
ling the quantum cloning channel ®, the marginals becomes for all pure quantum
states p,

Iq
d?

- I ~
D41(p) =p1-p+(1—p1)gd and Po(p) =p2-p+ (1 —p2)

for some p, g € R. Therefore, the following transformations rules for ® hold :

1-— 1-—
f1=p1+—( dpl) f2=p2+( dp2)
dfi -1 dfy—1
p1 = d—1 D2 = 11

The main result is expressed as the following : the achievable fidelity region,
defined as

{(fl,fQ) 3P - My —5 (Md)®2 such that E

pel’

[F(q%(p),pﬂ = f}

is a union of ellipses, with the optimal one coming from a restricted class of
quantum cloning channel (see Figure 1).

Theorem (|[NPR21|). The achievable fidelity region for the universal 1 — 2
quantum cloning problem is the union of a family of ellipses indexed by \ € [0, d],
given by

Lol o,
@y by
with ay = \/déﬁ,b,\ = ﬁ and ¢\ = gglj. The parameters x and y can be
expressed as,
e =gz v =m-p
y = —d(fldtff)fz o Yy =p1+pa

The optimal quantum cloning channels correspond to A = d.
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FIGURE 1 — The achievable fidelity region [ of the universal
1 — 2 quantum cloning problem is the union of a continuous
family of ellipses [".

In Section 4.1.1, the Choi matrix Cj of a twirled quantum cloning channel ® from

My to (./\/ld) ®2, was shown to be a linear combination of the 6 partially transposed
tensor representations of the symmetric group s :

C&DZCl‘w(EEE)‘i‘CQ'w(SD_CS)+03'w<'j—\:)+C4 w< )+c5 w(-\c)—l—cg ¢<>f->

for complex numbers cy, ..., cg € C. Such linear combination is the Choi matrix of a
quantum channel if both the positivity and the trace conditions of Theorem 3.1 are
satified. N

By taking the corresponding partial traces, the two marginals of ® becomes on
all pure quantum states p,

il(p) = (dCQ + c5 + Cﬁ) p+ <d261 + ng + dC4) Ed
;T 1:;1

J/

~ I
®y(p) = (des + ¢5 + o) p + (dPey + dey + dey) Ed

~ ~

D2 1-p2



The partially transposed tensor representations @D(E)\(E) and w(?/(:) corresponding to
the two cycles (123) and (321) of &3 contribute, with coefficients ¢; and cg, to both
the p; and py of ®; and ®,. Hewever, due to the no-cloning Theorem 4.1, a Choi

matrix composed only of the two cycles (123) and (321) of &3 cannot be the Choi
matrix of a quantum channel, since no linear combination,

o0 (36) + 80 (%)

is positive semidefinite. Hence, contributions from the other 4 partially transposed
tensor representations are needed to ensure the positivity of the Choi matrix Cj.
The trace condition implies that

d*c; +d(cy +c3+cq) + s +cg = 1.

In the following, the tensor representation function v is dropped, and instead
the partially transposed permutations are depicted using the graphical calculus from

Section 3.5. The focus now shifts to the problem of characterizing the positivity of
the Choi matrix Cs using the coefficients ¢;. To achieve this, let the vectors u; and

v; of be defined for all i € {0,...,d — 1} by,
u; = V- |Q>(071) ® |z> and v; = Vd - ‘Q>(0,2) ® ‘z>,

depicted as

L]
U; = 21 and v; = .

Then, the action of the partially transposed permutations on these vectors is given

by,

D> D bad gD aed o,
ToTn mtm e )
2 =3 X2 =dDe X2 =2
and,

SD-B MDD, HB-dD
Ll 11 L] L] {1} L] ' L] {1} L] (4.2)
sTi=2 oFi=3i HeFi=d- 2.

The vectors u; + v; and u; — v; are eigenvectors of 2% + 3 and & + L. Since
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they are all d-rank matrices, their complete (nonzero) spectrums is known :

oo o, d 1 d

: (d—1) xd
. . L4 . +(d+ 1) Xd
Spec (26 100 =

The other two partially transposed permutations +—: and s, are unitary matrices
and thus have full rank.

In the next two Sections the positivity of the Choid matrix Cj is characterize in
terms of the coefficients ¢;, first by restricting to the first 4, and then considering the
general case.

4.3.1 Restricted quantum cloning channels

In this Section, the universal 1 — 2 quantum cloning problem will be solved
when the Choi matrix Cj is a linear combination of only 4 partially transposed
permutations of &3, that is,

_ (1 o .\f. (1 o (1 o
Cg=c1-2+e gt +a- %

Since Cz must be positive semidefinite and in particular Hermitian, the following
must hold : ¢1, ¢y € R and ¢35 = ¢4. That is;

Gy =25 4036 736 4726
such that the trace condition becomes d(a + ) + 2R(y) = 1. Using Eq. (4.1) and

Eq. (4.2), The 4 partially transposed permutations can be block diagonalized in the
basis of the 2d vectors u; and v;, i.e.,

) - (4 1)

and,

(5).- (1 o)



such that each partially transposed permutation operators is a direct sum of d such
blocks and d® — 2d zero blocks, e.g.,

Dd
e (4 )
==\o o

Then the block diagonal decomposition of C3 becomes

(C’~) _ da+75 a+dy
®/i B+dy dB+v) "

It is well known that a 2x 2 hermitian matrix M is positive semidefinite if and only
if det(M) > 0 and Tr[M] > 0. Then Cj is positive semi-definite if and only if each

of its 2 x 2 blocks, in its block diagonal decomposition, are is positive semidefinite.
That is

Tr |(Cy),] = dla+ B) +2R(7) > 0

and
det ((Cﬂg)) =af —|y)* >0.

The first condition is always true since d(a + () 4+ 2R(y) = 1. Finally, the Choi
matrix Cf is the Choi matrix of a quantum channel, and thus a quantum cloning
channel, when both

dla+8)+2R(y) =1 and aB > |y

The two marginals of ® becomes on all pure quantum states p,

~ I
P1(p) = (dov +2R(y)) p + dB =
1-p
P1 P
Iq

Ba(p) = (dB +2R()) p+ da

1—
P2 P2

Theorem. The achievable fidelity region for the restricted universal 1 — 2 quan-
tum cloning problem s the ellipse given by :

z?  (y—o
a? b2

‘ 2_
with a = \/d;i—l’b = dQ(il and ¢ = %. The parameters x and y can be expressed

<1,
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as,

d—1
_ (i) -2 Y =pL+pa.

{:L‘ _ dfimfo) {x =1 — Do
or
Yy =33

Equivalently, the achievable fidelity region for the restricted universal 1 — 2
quantum cloning problem s the set,

{(pl,pz) € [d;——ll’l} ‘ (1—plc)l§1_p2) N <p1+]2)2_1)2}.

Proof. A pair (p1,p2) € [d;—il, 1] is in the achievable fidelity region for the
restricted universal 1 — 2 quantum cloning problem if and only if there exists
coefficients «, € R and v € C satisfying both,

dla+B) +2R(y) =1 and  aB> |y
with,

p1 = do+ 2R(y) ps = df + 2R(7)

Such a complex number 7 exists if and only if,

(1 —d(zcwrﬂ))2 < b

Rewriting the this inequality in terms of p; and py yields,

(1 —p16)ig1 — D2) > <p1 +12’2 - 1>2.

4.3.2 General quantum cloning channels

In this Section, the general case of the universal 1 — 2 quantum cloning problem
will be solved when the Choi matrix CF is a linear combination of all the 6 partially
transposed permutations of &3, that is,

L] {] .\f. Ll {] — L] {] G
Cg=a- 2840 50+7-3+7-2Ltea-=tea s
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Restricted Achievable fidelity region

1 [ “7‘\\\ | | d == 2
d=3
\ d=14
0.5 )
AN
D2 \\
\\ A\
\ \
AN
0 |
| | |
0 0.5 1
D1

FIGURE 2 — The achievable fidelity region for the restricted
universal 1 — 2 quantum cloning problem is an ellipse.

The hermitian condition on Cy imposes that o, 3,€1,€2 € R, and the trace condition
reads d(a + 3) + 2R(7) + d%c; + dez = 1. As in the previous Section, the action of
(% decomposes on with respect to the the 2d vectors u; and v;.

Let 'V be the complex span of the 2d vectors u; and v; :

3

Vs {2,51)

then V C C?® V2C?, and is invariant by the two partially transposed permutations

= and +-¢ that have both full rank. On V*, the spectrum of & - == 4 &5 - st is

Spec |Vl <51 . :E: + &9+ :;:) =

e1+er xd4 _oq
€1 — &9 xd@.

Then the complete block diagonal decomposition of Cj is made of 2 x 2 and 1 x 1
blocks. The 1 x 1 blocks (g1 4+ €2) and (e; — €2) are positive when g1 > |e3]. On V/
the block diagonalization of C5 becomes,

(C~) . dOé+'7+51 @+d’7+52
®i T \B+dy+ey dB+y+e)’
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After the change of basis

D m(fiﬁf}i)

i ﬁ(if%l)

the block diagonal decomposition becomes the Hermitian,

( ) (d+1)w+51+82 \/dzfl(a—ﬁ)
;). =
d;_l (Q{ - 6) (d + 1)—a+5_22%(7) +&1— &9

The two marginals of ® becomes on all pure quantum states p,

D, (p) = (da+2R(y)) p+ )dp + d’e1 + de») fa

ARG d
p1 1=p1

- , Iy

(I)Q(p) = (dﬁ + 2%(’}/)) P + (dOé + d €1+ d8225.
;; 1:;72

Theorem. The achievable fidelity region for the universal 1 — 2 quantum clo-
ning problem is the union of a family of ellipses indexed by X\ € [0,d], given
by

2 2
T —c
g (y 2 A <1,
ay by
with ay = \/d%l,b)\ = ﬁ and ¢\ = gglj. The parameters x and y can be
expressed as,
e or T =p1—pe
d -2
y =t Yy =pi+pe.

Proof. Setting x = p; — p2 and y = p; + py, together with the relation d(« +
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B) + 2R(7y) + d*eq + deg = 1 yields,

(2~ 1)y+d(d—1) ((d2—2)e1+dea—1) +2 V=
2d 2d
(CE>)¢ -
JET | (@-y+d(d+1) ((@2=2)e1+dea—1)+2

24 ¥ 2d
Let A := —d((d? — 2)e1 + des — 1), then the block diagonal decomposition of
(U reduces to
L (@ =1y —(d—1A+2 Va2 — 1z
()= 34 VE 1z (= Ly — (d+ )X +2)

In this way, the positivity of each of the 2 x 2 blocks becomes

2

\2
0<i<d amd Sz o
ax by

; o A A . Ad=2
with ay ‘= \/dTi—l’b)‘ = P2 and C) = 21"

4.4 Universal 1 — N quantum cloning problem

This section covers the arbitrary universal 1 — N quantum cloning problem, in
the general case of quantum systems of any dimension [NPR22|.

4.4.1 Partially transposed permutations

This section is devoted to the study of the partially transposed tensor represen-
tations 1(co)" of the symmetric group &y, that appear in the Choi matrix of the
twirled quantum cloning channels. In this section, the symmetric group Gy, is the
group of permutations of the set {0, 1,..., ] N}, starting from 0.

Remark. In the Choi matrix of a twirled quantum cloning channel, the input ten-
sor corresponds to the set {0} of its partially transposed tensor representations,
and the ouput tensors correspond to the set {1,..., N}.

Let 0 € Gyy such that 0 is a fixed point of o, i.e. (0). Assume that (o)
appears in the Choi matrix of a twirled quantum cloning channel, then ¢ does not
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contribute to the performance of the quantum cloning channel. Indeed on all pure
quantul states p,

where ¢ is the permutation of the symmetric group Gy on {1,..., N}, obtained from
o by dropping {0}. Each marginals in thus a scalar multiple of the identity.
Let >, be the subet of Gy be defined for all 1 < a,b < N by,

Sap={0 € Sny1|0(0) =aand o7'(0) = b}.
This gives a partition of

{o€6n|a0)#£0} = | s

1<a,b<N

where each set X, contains (N — 1)! permutations.
Note that for all 1 < a,b < N and for all 0 € ¥, there exists a unique 6 € Gy_;
such that the partially transposed tensor representation (c)" decomposes into,

D(0) =¢((La)) - (d-wory @¥(5)) - w((1D)), (4.3)

where (d - W(0,1) ® w(&)) is the partially transposes tensor representation of a permu-
tation in 2171.

Lemma 4.7. Let distinct 1 < a,b,c < N, then

(41 (0) { > w(a)r}

é > Tr[w(o)] Iy

UEZa,b ceEGN_1
Triv1\ {0} { Z zp(a)r} — Z Tr [w(aﬂ <1y
0ESc, e c€GN_1

Proof. For the second equation, using the decomposition of Fq. (4.3),

Triv+1\ (o) { >, w<o—>r]

0EY e

=T | 3 9((10) - (d-won ©96) - w((10)

GeEGN_1
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=T1“[N+11\{0}[ > Z¢ (1)) - (Jii)ii| ® ¥(5)) - @D((lc))}

eEGN_11,7=0

—1e[ S (06 0) - (5] @) w0 e~ )] -

GeEGN_11,7=0

= Y Tr[¥(o)] I

c€EGN_1

where ¢ ((0 (c — 1))) is the tensor representations of the permutation (0 (c — 1)
on {0,..., (N —1)}. For the first equation, since the partial transpose is a linear
operator,

Triv+1\{o} { Z ¢(0)r} = (TF[NH}\{O} { Z ¢(a)}>r.

2P 0€Ya b

For any 0 € Gy, the partial trace of the tensor representation (o) is a
multiple of the identity, i.e.,

Trivs1voy [¥(0)] = ¢ I,

with ¢ = 2 Tr [¢(0)]. Then

(Tl”[zvm\{()}[ > w@])r 11| X v

O’GEa’b Geza,b

For a permutation 0 € Gy.1, let #0 denotes the number of disjoint cycles of
0. Then

Tr[ > w(a)} =y d*

Ueza,b

= 3 gtleeten),

Ueza,a

Let distinct a,b € {0,..., N} and a permutation o € Sy with its decompo-
sition into disjoint cycles 0 = ¢; o - - o ¢. If there exists i € {1,...,k} such
that both a,b € ¢;, then the permutation ¢; o (a b) can be decomposed into
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two disjoint cycles. Otherwise, if there exist distinct 7, j € {1, ..., k} such that
a € ¢; and b € ¢;, then the permutation ¢; o ¢; o (a b) can be decomposed into
only one disjoint cycle. Finally

#Ho+1 ifJdie{l,....k}st.abeq

#0 — 1 otherwise

#[oo(ab>]={

But when o0 € ¥,, and since b # a, in the decomposition of ¢ into disjoint
cycles, a is in the cycle (0 a), and # [0 o (ab)] = #0 — 1. That is

1
Tr [ Z 1/1(0)} = c_lTr [ Z w(a)]
o€,
Using the first equation,

Tr[N+1]\{O} [ Z ¢(U)r:| :é Z Tr [77/)(0')] -]d.

UEEG"b cEGN_1

The next lemma establishes the relationship between a Choi matrix of a partially
transposed tensor representation ¢ (o))", and its corresponding quantum channel.

Lemma 4.8. Let some 1 < a,b < N and 0 € X,, then there exist u,v € Gy
satisfying u(0) = a—1 and v1(0) = b— 1, such that 1(o)" is the Choi matriz of
the linear map,

X () (X @ 1) - p(w).

Proof. Using the decomposition of Fq. (4.3),
P(o) =p((1a)) - (d-wey ®@¥(6)) - ¢((1)),
for some unique permutation ¢ € Sy_1. Then,
Tr{o} ['I/J(O')F(XT ® ]?N)}

= Trgoy [9((1 ) - (- wion @ $(3)) - ((15) (X" @ 17)]

[y

o((1e) - (il @ 0(0) - w((1D) (X" 0 1)

1,7=0

d—
= Tl"{g} |:
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= S Gl i) w0 a = 1) - ([i¥i] & 966) v (0 6~ 1)

,7=0

=9((0(a—1))) - (X ®1(6)) - ¥((0(b—1))).

Thus, by setting ¢ (1) =1 ((0(a—1))) and ¢¥(v) = (La®(5)) -4 ((0(b—1))),
the result holds.

Recall that the upper bound of the universal quantum cloning problem for a

direction vector a, from Section 4.2, is given as the largest eigenvalue of the the
matrix /7, defined by,

Za'z 01 +d w01)®l®(N 1)

The eigenvectors of R, are the same as those of the matrix S, defined by,

:Z d w(Oz ®I®(N_1)'

Lemma 4.9. [NPR22] The normalized largest eigenvectors of S, are of the form

N

X = Zbi : (\/g ’Q>(0,i)) @ [v),

=1

for some vector ’v> in the symmetric subspace VIV"DCE, and some positive real
numbers b; satisfy the equation,

(d—1)§:bf+ (ﬁ:b)Z =1

2
The largest eigenvalue becomes A pap = Zf\il a; ((d —1)b; + Zjvzl bj) )

I Remark. Note that the positive real numbers b; depend on the direction vector

4.4.2 Optimal symmetric quantum cloning channels

The symmetric universal 1 — N quantum cloning problem is a special case of
the quantum cloning problem, where all the marginals ®; of the quantum cloning
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channel are asked to be equal on all pure quantum states p, i.e.,

L4
Cilp)=p-p+(1-p)—,
where p does not depend on the choice of the marginal ®;.

Theorem ([KW99|). The optimal quantum cloning channel @, from My to

(/\/ld) ®N, for the symmetric universal 1 — N quantum cloning problem, is defi-
ned on all pure quantum states p by

P (po 17N V)RS

Dopilp) = Sn7

Tr [PgN}

where PgN is the orthogonal projector onto the symmetric subspace VN C?, defined
by

1
Pg, = Nl Z Y(0).

ceGN
Then each marginal (Cbopt)i 15 equal, on all pure quantum states p, to,

d+ N AN\ Iy
N@d+1)” Nd+1))d

J/ . 7

(q)opt)i(p) -

~~
Popt 1_popt

4.4.3 Optimal asymmetric quantum cloning channels

The asymmetric universal 1 — N quantum cloning problem is the general case
of the quantum cloning problem, where the marginals ®; of the quantum cloning
channel can be arbitrary.

In Section 4.3, the main technical difficulty was the positivity condition of the
Choi matrix of the quantum cloning channels. Let & : My — (./\/ld)®N be is a linear
map defined by,

O(X) = A(X @ 15N V) A7,

for some matrix A € My~v. Let ¥ : My — Mgy be a linear map defined by
U(X) = AXA*, then,
V(ze[fVY) = o(X).

Through this conjugacy form ¥ and in particular ® are both completely positive.
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Optimal symmetric fidelity
0.8 ‘ ‘

—d=2
d=3

popt

FIGURE 3 — The optimal fidelity for the symmetric universal
1 — N quantum cloning problem.

Theorem 4.10. Given a direction vector a, let x = Zf\il b; - (\/8 ‘Q>(0 N ) ® ‘v>
be normalized largest eigenvectors of S,. The optimal quantum cloning channel
5,1 from My to (Md) ®N, for the asymmetric universal 1 — N quantum cloning

problem in the direction a, is defined on all pure quantum states p by
AN(N +d—1)
d4 =

Pézv (P ® [C?(Nil)) (PgN)*’

where,

" 1
Ps, = N Z booy+1 - ¥ (0).

ceGN

Proof. The complete positivity is given by the conjugacy form of the quantum
channel ®F .
For the trace preserving property, the Choi matrix Cea = of ®g; will be first

determined. For all pure quantum states p,
_dN(N+d-1)

(I)gpt<'0) o Tr [Pg } PgN (p ® I(;@(N_l)) (PéN)*
N
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dAN(N +d—1 _
- (N!)(2 . Ty [pgN)} U,TGZ;N (bU(O)H ’ bT‘l(O)H) -1p(0) (p ® [c?(N 1))¢(T)-

As a consequence of Lemma 4.8, for any 1 < a,b < N, the matrix

(N=D1! Y (),

O'Eza,b
is the Choi matrix of the linear map
X Y ) (XYY yw).
122 Veza b
p(0)=a—1
v 1(0)=b—1

This implies that the Choi matrix Cq;.gpt of ®¢ is,

_d(N +d-—
Cos = SEL S b
N Tr PGN 1<a,b<N

JEZab

Finaly, using Lemma 4.7, the equation (d—1) 33N | b2+ (ZN b; )2 = 1 satisfied
by the positive real numbers b;, and the relation Tr [PgN_J i f; ; Tr [P+ }
the trace condition on the Choi matrix Ccpgpt holds, i.e.,

Trivsip oy [Cag,,] = La-

opt

Hence ®¢ ; is trace preserving, and thus a quantum channel.
[t remains to prove that the optimal quantum cloning channel & ; saturates
the upper bound,

> o B [P(@h)00.0)] < 25
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For all marginals (®§) , the average fidelity Eer [F((@gpt)i(p), p)] becomes,

E |F((®),(0).0)] = E. {Tr [Cas,. (ol @ 0y @ 15 (N_U)H

pel
1

= ®(N-1)
~d(d+1) o lapgm <(d2 Tog) +d-wos) ®1 >]

Tr [C@gpt} + Tr |:O<1>gpt (d-w) ® ]SZ)(N_D)}
d(d+1)
d+ Tr [C@gpt (d  Wog) ® L;@(Nfl))]
B d(d+1)
Using the form of the Choi matrix Copa_,
Cag,, (4w ® 17" ) = %N;dpll > by ( (0 z’))r)

GN 1<a,b<N
O'GEa b

_d(N+d-1) 3 <
bo( (d—1)bi+ Y bb)w(ay.
N' TI' PgN 1<%<N 1<b<N

(S a,t

Such that taking the trace yields, using Lemma 4.7,

N 2

T [C% (- wo @ ff(NJ))] - d((d — Db+ ij) )

j=1

and finally the average fidelity becomes,

1+ ((d=1b+ XV, b)°

E |F((@5),(0).0)] = I
But since
/\max(Sa> = <X’ Sa ’X> = Zai ((d - 1)b% + ij) )

then the equality Zfil a; - Eyer [F((Cbgpt) (p), p)] = ’\"‘%(f“) holds.
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4.4.4 Optimal quantum cloning channel necessary condition

Let a be a direction vector and @, be the optimal quantum cloning channel for
the universal 1 — N quantum cloning problem in the direction a. For all marginals

(Popt),» the average fidelity f; = Eer [F((@gpt)i(p), p)} is

L+ ((d—1)b+ XY, b))
d+1 '

fi=

Summing over all ¢ yields,

N

Y VAd+1)fi—1=(N+d—-1)) b

i=1

Using the equation (d — 1) 2% b? + (Zf\il bi)2 = 1 satisfied by the positive real
numbers b;,

2 (@+Dfi=1) =3 ((d— 1)bi+zbj)

i=1 i=1

-y vea-n(3on)
(X V@ i-1)

—(d-1
(d—1)+ Ntd—1

Finally from the relation f; = p; + 1_dpi, the necessary condition for the p;’s of the
optimal quantum cloning channels becomes,

N+(d2—1)2pi:d(d—1)+<

=1

S V@ = Dpi+ 1)

N+d—-1

2

(4.4)

4.4.5 The O-norm
Let z € RV, and define its O-norm by

AAmax (S2) = [|2]s
d?—1 ’

lzllo =
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Necessary condition optimal quantum cloning channel

L T T ] d—2
d=3
—d =4
0.5 =
D2
0, |
| | |
0 0.5 1
P1

FIGURE 4 — The necessary condition Eq. (4.4) of the optimal
quantum cloning channels for the universal 1 — 2 quantum
cloning problem.

where ||z]|; = SV, |2,] is the ¢, norm of the vector  and the matrix S, € Mgv+1 is
given by,

N
=Ykl (- 0a) 2 7

Note that the O-norm depends 1mph(31tly on a parameter d, and for non-negative
z € RY, the matrix S, coincides with that of Lemma 4.9.

Remark. Note that on its own Apa.x(S;) defines a norm, but in general, except
for trivial examples, subtracting two norms don’t provide a new norm.

Proposition 4.11. For all N > 1, the quantity ||-||o is a norm on RY.

Proof. The absolute homogeneity of ||-||g comes from the fact that both
Amax(Sz) and ||z||; are also absolutely homogeneous.

Let x € RY such that ||z]lg = 0, then d - Apax(Sz) = [|z]y = Tr[S,]. In
particular all eigenvalues of S, are equal to A\pax(Sz), and hence

Sx = )‘ma.x(Sx) : ISZ)(NJ’_I)’
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with Amax(Sz) > 0. Let distinct 4,5 = {0,...,d — 1} and |¢) defined by,

[¥) =lig---3)-

N times

Then

N
<¢‘ Yzl (- wp) @ 1YY
=1

(| Amax (Sz) - I&N V14 = Ao (S2).-

Finally Apax(S.) = 0 implies 2 = 0, and ||-||g is positive definite.

For the subadditivity of ||-||g, it is sufficient to prove that for any z,y € RY
such that ||z]|g < 1 and |ly|lo < 1, then ||%¥|lo < 1. Tt is possible to assert,
without loss of generality, that by multiplying the vectors by a scalar, the vector
z+yisin RY. Let 2’ € RY be defined by

¥y =0

Tr =

/ {[W—?]WM if [z, Z54] N ORY #

T otherwise

and similarly for y’ € RY, where 9RY denote the boundary of RY. Then ¥ €
[:p' '], and there exists )\ € [0,1] Such that £ = X\~ 2’4+ (1 — ) - /. Then
using,

N

Am(Z (440 (2-w00) £ 15
=1

N

S h (St (0000) @ ) e S (0-) 015°)
i=1

and the absolute homogeneity of [|-|o,

r+y
|52, <2 lefllo + (=) - /e < max (a’llo, 1/l10).
Now there exists t, € [0,1]" and t, € [0,1]" such that element-wise product
equations z’ = ¢, -z and ¢y = t, - y hold. It remains to prove that, for all

€ [0,1) and = € RY, the inequality ||t - z||g < ||z||g hold. With this both
l2'lle < 1 and [jy'llg < 1, such that [|5*]lo <1
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Let z,y € RY such that z; < y; for all i € {1,..., N}, then ||z|lg < ||y]lo-
Indeed, let x = Zfil b; - (\/c_l ‘Q>(0 9 ) ® |v> be normalized largest eigenvectors

of S;, then using that |v> e VIN-DC? and than all the b; are positive real
numbers,

(x| (d wiog) ® I |x)

= Z (&Bibr) - ({2 0.5 ® (0]) (w0 @ ITV ) (19D 0, @ [0))
= <(d— 1)b; + Zbk)

> <Zlbk) -

Now, using the equation (d — 1) 32~ b2 + (Zf\il bi)2 = 1 satisfied by the
positive real numbers b;,

1= (x|x)

= (d—1)§:b3+ (ibiy

=1 =1
N 2
< d( Z bi) :
=1

this implies that <X‘ (d-wog) ® ]C}@(N_l) ‘X> > cll This way since z; < y; for
all t € {1,..., N}, then A\pax(Sy) > <X‘ Sy ‘X> and,

)\max<Sy> - )\max(S:r> <X| Sy - S:L“ ‘X>

N
Z@ —2:) - (x| (@ wep) ® IFV 7V x)

N
2= m)g

Vv

7



1 1 :
Then |ly|lg = Amax(Sy) — EHyﬂl > Amax(Sz) — EHle = ||z||g, which conclude
the proof since ¢ - y = z for some t € [0, 1]V

With the help of the Q-norm, the upper bound from Theorem 4.5 can be re-
formulated as : for any direction vector a € [0, 1] the universal quantum cloning
problem is upper bounded by

N
1
S >a B, [F(@i(p). )] < Sllalli+ (1= )llalle

Let the dual Q-norm, be defined on y € RV by,

lylls = sup w.2)
ez oo

Q-norm & dual Q-norm 1-dimensional unit spheres [d = 2]

1 [ T T ]

-1 L ‘ J
-1 0 1

FIGURE 5 — The 1-dimensional unit spheres of the Q-norm H
and the dual Q-norm [OI.
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4.4.6 Achievable fidelity region

In this Section, the characterization of the achievable fidelity region for the univer-
sal 1 — N quantum cloning problem will be given geometrically, as the non-negative
part of the unit ball of the dual Q-norm.

Let Ry, be the achievable fidelity region for the universal 1 — N quantum
cloning problem, that is,

d

Theorem 4.12. Ry 4 is the non-negative part of the unit ball of the dual Q-
norm, i.e. p € [0,1]" is in Ry g4 if and only if ||p||5 < 1.

CPTP I
RN = {p c 0,1V ]3P : My = (/Vld) s.t. @i(p) =pi-p+ (1 —pi) d}-

Proof. The following more general result will be first proved. Let X be a finite
dimensional real vector space and let X* denote its dual space. Let ||-||; be a
norm on X, let ||| be a norm on X* and define the dual norms as follows,

. Yy, T *
Il = sup 20 vy e X"
zex ||lzl1
x#0
" Yy, T
[yll5 == sup < >, Yy € X.
AT
x#0

Provided that both conditions,

Ve e X,Vye X%, (z.y) < llzlillyll: (4.5)
Vye X" Ire X, (z.y) = llz[llyll2, (4.6)

are satisfied, then Vo € X ||z||; = ||z||5. In particular the unit balls of ||-||; and
||I|I5 are equal. Indeed, from Eq. (4.5), then Vo € X,

(&y)
o~ el

and from Eq. (4.6), then Vy € X* Jz € X,

(o) _ o (o)
Tylle _yeX* yll2

|z[ls = sup
yeXx*

]l = < [l=ll3,
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which conclude the proof of this first result.
Now to prove the theorem, define the norm ||-||z on z € RN by,

|||z == max {t >0t |z| € ”RN,d},

where ¢ - |z| denote the vector of RY with coefficients ¢ - |z;|. The norms ||-||z
and ||-|| o are as in the settings above. If both conditions Fq¢. (4.5) and FEq. (4.6),
i.e.

VpeRY Va e RY, (p,a) <|p|rllalle

Va e RY,Ip e RY, (p,a) = |plrllalle,
are satisfied, then the theorem holds.

Let p € Rnq and a quantum cloning channel @, : My — (/\/ld) N such
that for all marginals (®,). and all pure quantum states p,

(Dp);(p) =pi-p+(1 —pz‘)%-

Then for all direction vectors a € [0, 1]V,

gl + (= Plala > sup S & [F(@0).0)]

® cpTp i peT

pel

> ﬁ:a E [F((%)i(p),f))}

= ~Jally + (1 - 5) (p,a)

This gives (p,a) < |[lallg for all direction vectors a € [0,1]". For arbitrary
a € RY, note that

(p,a) < (p,lal) < lllallle = llalle,

showing that the condition Eq. (4.5) is satisfied, since ||p||r = 1.
Let some direction vector a € [0, 1]", then from Therem 4.10, there a quan-
tum cloning channel ®¢ ; such that,

a- B [F((®5),0).9)] = gllall + (1 = 9)llale,

1=
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with some p € Ry 4, such that,

i+ B [F(@3),0),0)] = Flolls + (1 = 5) (.0

1=

This shows that condition Fq. (4.6) is also satisfied.

From Therem 4.12, the achievable fidelity region Ry 4 is a convex set delimited
by a family of hyperplanes (see Figure 6) :

(p,a) = lallo.

R, is delimited by a family of hyperplanes

1, |

0 1

FIGURE 6 — Ry9 [ is a convex set delimited by a family of
hyperplanes [ (p, a) = ||a| o
Note that within the formulation of the quantum cloning problem, i.e.

sup iai- E [F@)i(P%P)}’

® cpTp 5 pel’
=1

the optimal quantum cloning channels are twirled quantum channels, and thus their

I
marginals are of the form p — p; - p + (1 — pi)gd, but the p;’s are not asked to be
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collinear with the a;’s. Instead they have to maximize,

N = b,
;‘“'(p‘* d )

The optimal quantum cloning channels from Therem 4.10, can indeed give p;’s in a
different direction than the a;’s, especially if the direction of the a; does not intersect
an extreme point of Ry 4. As a consequence, the optimal quantum cloning channels
from Therem 4.10 do not fill the boundary of Ry 4, since some points in this boundary
are not optimal with respect to the optimisation problem.

For example, from Therem 4.4.2]

2
max {p € [07 1] { (p7p7 0) € R3,2} = ga

that is the popy for the symmetric universal 1 — 2 quantum cloning problem is
2/3. However (2/3, 2/3,()) € Rs32 is not optimal for the asymmetric universal 1 — 3
quantum cloning problem, given the direction vector a = (1/2, 1/2,0). Indeed, the
the optimal quantum cloning channel in this direction, from Therem 4.10, gives

(2/3,2/3,1/9) € Rs2 (see Figure 7).

Flat region in the slice (p, p, q) of R3.2

2/3

0.5 :

0 0.5 1

FIGURE 7 — R3p is a convex set delimited by a family of hy-
perplanes, but some points may intersect more than 1 hyper-
planes. Here is a view of the slice (p, p, ¢) O of R34, with a flat
region [1.
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In conclusion, as the previous example shows, given a p € [0,1]Y, in order to
decide whether p is in the achievable fidelity region Ry 4, it does not suffice to check
the necessary condition Fq. (4.4).
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The present Section, discusses the results of the papers ‘On extendibility of quan-
tum states” [Chr+23|.

5.1 Extendibility of quantum states on a graph

Let (& be a graph with N vertices. A quantum state on the graph G is a quantum
state p on a N-fold composite quantum system, each associated to a vertex of G, i.e.

p € (C N

Let e == (u,v) be an edge of the graph G, the reduced quantum state p. is the
reduced quantum state on quantum systems v and v, i.e.

Pe = TrG\{u,v} [p} :

The complete graph on N vertices, denoted /' is the graph G where for all
distinct vertices w and v in G, the pair (u,v) is and edge of G, i.e. every pair of
distinct vertices is connected by a unique edge (see Figure 8a). The complete graph
Ky has w edges.

The star graph on N vertices, denoted Sy is the graph G with a distinct central
vertex v € G such that the pair (u,v) is an edge of G for all other vertex u € G, i.e.

it is the 1-depth tree of order N (see Figure 8b). The star graph Sy has n — 1 edges.

.\//.\\\. .\I _~®
<Y/ I\

(a) Ks (b) Se

FIGURE 8 — Complete graph on 5 vertices K5, and star graph
on 6 vertices Sg.

From Section 3.2.4, a bipartite quantum state p is k-extendible if there exists
a quantum state o on the star graph Si.; such that for all edges e, the reduced
quantum states on e is,

O = p.
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5.2 Quantum cloning : star-graph extendibility of
isotropic states

The quantum cloning problem can be seen as an extendibility problem, when
considering the Choi matrix of the quantum cloning channel. Indeed, a perfect 1 — N
quantum cloning channel ¢ : My — (./\/ld) #N would have a Choi matrix Co living
on a star graph Sy such that for all edges e, the reduced Choi matrix on e is,

(Oq;)e =d-w.

Because of the no-cloning Theorem 4.1, or alternatively the monogamy of the entan-
glement from Section 3.2.4, the normalized reduced Choi matrix on e is required to
be instead an isotropic state,
1
d

The symmetric 1 — N quantum cloning problem can then be solved using a
semi-definite programming (SDP) optimization problem :

(Cop)e =Ae-w+ (1 =)L,

max p
Co,p
st. (Cop)e=d(p-w+ (1—p)]I), for all edges e

TI[N+1]\{0} |:Cq>:| =1;,, Ce>0, pe€ [0, 1].

Note that in the previous optimization problem, the conditions T'ryi1)\ {0} [C@} =1
and p € [0, 1] are superfluous, and the optimization problem reduces to,

max p
Cs.,p
st. (Co)e = d(p cw+ (11— p)I), for all edges e
Cs > 0.

From Therem 4.4.2 this optimization problem has optimal solution :
_ d+N
Povt = N@+ 1)
5.3 Ky-Extendibility of isotropic states

The optimization problem of Section 5.2, can be extended to the following quan-
tum state marginal problem. Given a complete graph Ky, what is the largest p €
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[0, 1], such that there exists a quantum state p on Ky, with all reduced quantum
state p. = p-w + (1 — p)I, for all edges e? This problem depends on the num-
ber of quantum systems N and their dimension d, and can be stated as the primal
semi-definite problem :
p(N,d) == max p
pp
st. pe=p-w+ (1 —p)l, forall edges e (5.1)

p>0.

5.3.1 Lower bound

A perfect matching on a graph is a set of edges, such that every vertex is
contained in exactly one of those edges.
Proposition. There are (2N — 1)!! perfect matchings on Koy, and if e is an
edge on Koy, then there are (2N — 3)!! perfect matchings on Koy containing e.

Proof. Let a,, be the number of perfect matching on Ksy ; clearly a; = 1. Now
assume n > 1 and let v be a vertex in Ksy. This vertex can be matched with
2N —1 other vertices, let u be such other vertex matched with v. Remove u and
v from Koy, the resulting graph Koy \ {u,v} is the complete graph Ky(,_1).
Thus, by induction on N, the number of perfect matchings on K,y satisfies the
recursive relation :

an = (2N — 1)CZN_1 — an = (2N — 1)”

Assume e = (u,v), thus the number of perfect matchings containing e is the
number of perfect matchings on Koy \ {u,v}, that is (2N — 3)!L.

| Remark. There is no perfect matching on Ky for odd N (see Figure 9).

A lower bound on the optimisation problem Eq. (5.1) would be the following. For
even N, let Ey, ..., Ev_yyn be all the perfect matchings on Ky, and for each perfect
matching Ej, define the quantum state p*) on Ky by,

pk) = ® We.

ecEy

For odd N, let v be vertex of Ky, and let E,1,...,E, ny_2n be all the perfect
matchings on Ky \ {v}, define the quantum state p** on Ky by,

p(”’k) = ® We ® 1L,.

CEEU’k
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(a) K¢ (b) K

—@
I/,_/l

/
\

FIGURE 9 — Perfect matching B for complete graphs Ky, with
even N. For Ky with odd N, some vertices are not matched
.

That is a quantum state maximally entangled on the perfect matching edges, and
maximally mixed on the remaining vertex in the odd case. Let p be the quantum
state defined on Ky by

1
(N eVen) P = m Z p(k)
1 <k<(N-2)!
1
(N odd) p= P,
vEK N
1 <k<(N-2)!!

Then for all edges e in Ky, the reduced quantum state p. is

N-1 N-1

B L+ N=21 N even
T Lo+ X1 Nodd.

The lower bound becomes

1

—— N even
N’d > N-1
p(N.d) 2 {i N odd.

N

In particular, the lower bound is independent on the dimension d.

5.3.2 Symmetries

Since it is a complete graph, any permutation of the vertices of Ky is a graph
isomorphism. Let p be a quantum states on Ky such that for all edges e, the reduced
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quantum state p, is,
pe=p-w+(1—p)lL
Then p is invariant by vertex permutation, that is for all permutations ¢ € Gy, the
equality
(o) p-v(o) =p,
holds. B
Recall that a maximally entangled state w is invariant by U ® U, for all unitary
matrix U, i.e. (U®U)-w = w. On the star graph Sy with central vertex v, a quantum

state p with reduced quantum states p. = p-w + (1 — p)I, for all edges e, would be
invariant under conjugation by U on v and U*™=Y on Sy \ {v}, i.e.

(U” @ <U®(N71))SN\{v}) P (UvT ® (U *>®(N_1))SN\{v}> ks

But on the complete graph Ky, no distinct vertex can be chosen, instead, using
the invariant on a maximally entangled state by O ® O, for all orthogonal matrix
O € Oy ie. (O®O0)-w = w, a quantum state p with reduced quantum states
pe =p-w+ (1 —p)l, for all edges e, is invariant under conjugation by O®Y, that is,

O%N . p. (OT)®N = p.

Hence, with respect to the optimisation problem FEq. (5.1), the two commutation
relations,

[p’a} :0’ VO'EGN
[p, O®N] =0, YO € Oy.

hold for all N and d.

5.3.3 Dual spP

The Lagrangian [BBV04] associated with the semi-definite problem Eq. (5.1) is
defined as,

L(p,p,he,Z) =p+ Z <heape_p'w+(1_p)I>+<Z’p>'

e edge

The min-max principle states that,

max miy L(p, p, he, Z) < ggnﬁxL(p, p,he. Z).
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Then, the dual semi-definite problem of Fq. (5.1) is,

Tr[ S he @1?“‘”}

% L . e edge
st > Trlhe-(w-1)] =1
e edge
Z+ Y he@l;™ P =0 z2>0,
e edge

where for each edge e of Ky, the matrix h, € My is Hermitian, as well as the
matrix Z € My~. Recall that for any Hermitian matrix M the smallest A € R such
that A - I > M is equal to the largest eigenvalue of M. Then the dual optimization
problem can be simplified to,

* R ®(N-2)
p*(N,d) _Hllzlen )\max( Z he® 1, )

e edge

s.t. Z Tr [he . w} =1

e edge

Tr [he} =0, for all edges e.

From the commutation relation Fq. (5.3) applied to the dual optimization pro-
blem, define for all edge e, the twirled Hermitian matrix h, :

he = /O (0®0)(he) (0T ®0OT) dO,

where the integral is taken with respect to the normalized Haar measure on the
orthogonal group Og4. The constraints of the dual optimization problem are also
satisfied with h., and since by convexity of Aj.x,

)\max< Z he @[?(N—m) > )\max< Z %e ®]§(N—2)>7

e edge e edge

hence the dual optimization problem can be restricted to twirled Ee.
The twirled h, commutes with all the orthogonal matrices O ® O, i.e. they are in
the commutant of the algebra

SpanC{O®O}O€Od}.
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From Theorem 2.3.3, the twirled Ee is in the complex algebra spanned by the tensor
representation of the Brauer monoid :

Spang {(p) ’ pEBy}.

Hence, the twirled 7Le are a linear combination of the unormalized maximally mixed,
maximally entangled, and flip state :

,ﬁe - ae(dz : Ie) + 5e(d . we) + ’}/e(d . Fe)a

subject to the constraint a, = —5“"%:%. The dual optimization problem simplifies to,

. . ~ Bet e, p ®(N-2)
p (Nad) _g:}yr: Amax( Z ( d (d 'Ie)+ﬁe(d'we)+’ye(d'Fe)> ®]d

e edge

s.t. (d2—1)( > &) +(d—1)( > %) = d.

e edge e edge

From the commutation relation Fq. (5.2), applied to the dual optimization pro-
blem, all the 5. and 7, must be equal. Writing = (. and v = 7, for all edges e,
the dual optimization problem simplifies further to

\ . Bt e _ _ B(N-2)
) =i Ao 2 (= 1) ) 0 R 0 177

N(N—l)(

1.
> 2

B(d*—1)+y(d—1)) =d.

Using the constraint W(ﬁ(cp —1) +y(d — 1)) = d to eliminate v, let the
function f be defined by f(z) = Apax (H(x)) with

H(z) =Y (( T N_f)(l_ d)—$>((dQ'Ie)—d(dFe))+x((d-Fe)—(d-w))®I§§(N_2).

e edge

Then the dual optimization problem becomes finally the minimization,
p*(N,d) = min f(z).

Recall from Theorem 2.2 that under the action of the tensor representation of
the symmetric group algebra Sy, the space of N-fold tensors over C¢ decomposes as

(Cd) QN ~ @ V)\@m)‘ :

Aelrr(G )
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where Irr(Gy) = {)\ FN } A < d}. Similarly, as a consequence of Theorem 2.3.3,
under the action of the tensor representation of the Brauer algebra By(d), the space
of N-fold tensors over C% decomposes as

@)™~ D

Aelrr(By)

where Irr(By) = {A+ N =2k |k e {0,...,[5]} and X + X, < d} [Wen88]|. Both
decompositions are indexed by some Young diagram .

Given a irreducible representation W) of the Brauer algebra By (d), the restriction
of W) to the symmetric group algebra Sy, as a subalgebra decompose into

Resgg(d)(W,\) ~ @ Vfam“.

nelrr(Gy)

The multiplicities have no known concise formula. Even the characterization of the
set (),
Q:={(\ p) € Ir(By) x Irr(Sy) | my, # 0},

is still unknown. However Okada [Okal6| characterizes it explicitly using an algo-
rithm, and gives the description of a subset ' C €,

[ = {(/\,,u) € Ir(By) x Irr(Sy) | A= (1"),r(n) = m for some m € {1,... ,d}} ,

where (1) is the number of rows with odd size in the Young diagram u. Moreover
if (1™), ) € Q then ((1™), ) €T

The content of a Young diagram A, denoted c()), is the the sum of the entries
of the boxes of the Young tableau T', where the entry of the box in row ¢ and column
j is given by j — i. For example if X := (3,3,1), then

and the content of A is ¢(A) = 1.
The next lemmas describe how particular central elements of the symmetric group
G and the Brauer monoid By, act on their irreducible representations.

Lemma 5.1 ([DLS19]). Let Vy be an irreducible representation of &y, with
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A € Irr(Sy), and define J an element of the symmetric group algebra Sy, by

Ji= > (ij)

1<i,j<N
Then the restriction of J on V) is the multiple of the identity,

J‘VA :C(A)[

Lemma 5.2 (|DLS19]). Let Wy be an irreducible representation of By, with
A € Irr(By), and define J an element of the Brauer algebra By (d), by

J= > (ij)= ),

1<ij<N

where (i )T denotes the partial transposition of the diagram (i j). Then the res-
triction of J on Wy is the multiple of the identity,

Jlw, = (c(N) —k(d—1)) - 1.
Using Lemma 5.1, Lemma 5.2, the decomposition of the space of N-fold tensors
over C? under the action of the tensor representation of the Brauer algebra By (d),

and the decomposition of the restriction of the irreducible representations of the
Brauer algebra By (d) to the symmetric group algebra Sy, the function f becomes,

1 (2d-cp) N(N —1)
flz) = ({33?9 fi_ 1 (N(N— 1 — 1) —l—x(c()\) +d-c(p) —k(d—1) — T)j’
fmv(z)

where f),(z) is an affine function. The dual optimization problem is then the mini-
mum value of the max over a set of affine functions, i.e.,

*(N,d) = mi . 5.4
p(N, d) = min max f,,(z) (5:4)

Case d > N or either d or N is even

An upper bound for the dual optimization problem Eq. (5.4), can be found by

setting x = m. Then Eq. (5.4) becomes, since x < 0,

p*(N,d) < )\e{gi(%m NV = i)(l —3 (c()\) — k(d — 1))
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Lemma 5.3. If d > N, or either d or N 1is even, then,

1

1
N
~v— U N is even.

P(V.d) < {— if N is odd

Proof. It is enough to prove that

U=AIN=D - if N is odd
min ¢(A) —k(d—1) < ’
Aelr(By) % if NV is even,

If d > N, the minimization can be restricted to only single-column partitions
A= (10W=20) for all k € {0,..., |§

51}, which is always possible when d > N.
Let |A| .= N — 2k, then

min ¢(A\) —k(d—1) <

<  min c(l(N_%)) —k(d—-1)
elrr(By) kef0,..,| 51}
A (N =1 N — |\
i D Ny
ke{0,...| X |} 2 2
U=N=D if N is odd
(1_2‘1)N if N is even.

Otherwise, if d is even, let k*

[%1 — g. Then the single-column partition
A= (12045 gatisfies N, + Xy < d for all k € {0,..., X | — k*}, and,

i A)—k(d—-1) < i
iy N =D = i

(1N — (k + k*)(d — 1)
ke{0,...,| X ]—k*}

U=AIN=D - if N is odd
(1—d)N

5 if N is even.

The same result holds if IV is even.

Theorem 5.4. Ifd > N, or either d or N is even, then,

p*(N,d) = {

if N is odd

—  if N is even.

o=
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Proof. Using Section. 5.3.1 and Lemma. 5.3, the dual optimization problem is
lower and upper bounded by,

N
1

~v—7 if IV is even.

{i if N is odd

Case N > d and both d and N are odd

Let 7 = m, then the affine functions fy, of Eq. (5.4) evaluated at the

negative coordinate & become,

Pal®) = 75 (;?jvciui) - 1) +f(c(A) td-e(p) — k(d—1) - W)
- nil +‘%'h()‘)7

where h()) is defined by h(\) = 1 M ON(d— X, +2(i — 1)). At this coordinate the

1=0""

affine functions fy , do not depend on p anymore. Let g be the function defined by,

g(A) = fA,u(j)'
The offsets of the affine functions f), do not depend on A either. Let a be the

function defined by,
1 2d - c(p)
= —1].
alw) =75 (N(N — 1) )

IftN >d k= L%j/dj and m = %1 mod d, let the two partitions Ay, Ay in
Irr(By) and the three partitions py, po, g3 in Irr(Sy) be defined by !,

A = (1d) 1= (N)
o= (1) pp=(N—-d+1,17") (5.5)
Mé — (d2k+1’m2)'

Lemma 5.5. If N > d and both d and N are odd, then Ay, us from Fq. (5.5)
satisfy

2d+2—-N

9M) —alpe) = —5—

1. In the definition above, us is given using the column notation pf. Using the row notation it
becomes 3 = ((2k + 3)™, (2k +1)?~™) : m rows of size (2k + 3) and d — m rows of size (2k + 1).
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In particular g(A\1) < a(pe) if N > 2d+ 3, and g(\) > a(pz) if N < 2d+ 1.

Proof. The content of ps is (N_dJr;)(N_d) —d(dgl). Also h(M\) = 0,80 g(\) = ﬁ
Then

o) = al) = g = 7o (o) 1)

N—1 d—1\n(n-1)
 (N—d+ )N -d)—dd-1) 1 1
= NN —1)(d=1) Ly v
_2+2-N
~ N-1 °

Lemma 5.6. If N > d and both d and N are odd, then the partitions from
Eq. (5.5) satisfy (Mi, pj) € T', and the relations,

g(A) < g(X2) <g(h) and  a(p) < a(m),

for all X # X\, Ay inIrr(By) and all p # py in Irr(Sy ). Moreover for all ()\1, u) €
Q

)

a(p) < alpz).

Proof. By definition of I', all (\;, p1;) are in I'.
Let A in Irr(By) then
() = 5+ 7 hY)
FNV=N_1T® ‘

But since \] < d holds for all A in Irr(By), then A(A) > 0. In particular,
h(X2) = 4L, and h(X) = 0 iff A = X;. Assume there exists A in Irr(By) such
that

9(A2) < g(A) <g(M),

then necessarily the first term of h(\) is either h(A;) or A(\y), since it minimized
for the columns (1) and (1¢). But since all the terms in h()\) are positive, then
either g(A) = g(A\1) or g(A) = g(Aa).

Because i is the N-box Young diagram that maximizes the content func-
tion, then

a(p) < alpa),
for all p # py in Irr(Sy).
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Assume there exists p such that (/\1, ,u) € () and,

a(pz) < a(p) < a(pm).

Since ((1),) € Q implies ((1%), 1) € T, then (A, ) € T, and by definition
r(pn) = d. Thus necessarily c(u2) < ¢(p), which implies that the first row of
o is of size at most n — d 4+ 1. But the content of a Young diagram is a non-
increasing function of the first row’s size, i.e. given two Young diagrams A and
p with the same number of boxes, if ¢(\) < ¢(u) then Ay < py. Then ps and p
share the same first row, and s = p.

Theorem 5.7. If N > d and both d and N are odd, then,

2d + 1 1
2dN +1"N -1

p*(N, d) = min {

Proof. Let \i, Ao and pq, po, 13 be the partitions from Fq. (5.5). Two cases are
considered in the proof, p*(N,d) = g(\1) when N > 2d + 3, and p*(N, d) lies
at intersection of the affine functions fy, ,, and fy, ,,, when N < 2d + 1 (see
Figure 10).

Since

c(ug):%ZH(—d(dQ_l)—i—(i—l)d)—i- %f (—WJr(i—l)m)

=1 1=2k+2
d(2k +1)(2k +1 — d)

= 5 +m(4k +4 —m),

and N — d = 2kd + 2m with m € {0,...,d — 1}, then

1 1 (2d-c(us)
9(/\1)—G(M3)—N_1_d—l(N(N—l)_1)

N({d+ N —2)—2d-c(us)
N(N -1)(d-1)
(d+2)(2m? — 2dm — N + dN)
N(N —-1)(d-1)
- (d+2)(=(d—=1)(d+1)/24+d(d - 1))
- N(N -1)(d-1)
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_(d+2)(d—1)
=v-p %

where in the first inequality N > d was used, and that the minimum of 2m? —
2dm on the domain m € {0,...,d — 1} is achieved for m = &1, Geometrically
this means that the point (0, a(us)) is always lower than (Z, g(A;)).

Suppose that N > 2d + 3, then the relation

g(M1) < alpz),

holds by Lemma 5.5. Therefore p*(N, d) > g(\;) since the optimal point should
be above the intersection of the affine functions f), ., and f\, ., that is, above
g(A1). But since g(A\) < g(A\y) for all A in Irr(By) by Lemma 5.6, it must be
p*(N,d) = g(\).

Suppose that N < 2d + 1, then the relation

a(p) < alpa),

holds for all ()\1,M) € Q, by Lemma 5.6. Then p*(N,d) lies above the affine
function fy, ,,. But g(A) < g(A\) for all A in Irr(By), by Lemma 5.6, then
p*(N, d) must lies on the affine function fy, ,,, at the intersection with another
affine function fy, with g(A\) < a(p). Among all such affine functions there
are no functions with A = A\; due to Lemma 5.6. Because g(\) < g()A2) for all
A # A in Irr(By) and a(p) < a(pq) for all p € Irr(Sy), by Lemma 5.6, it
must be that this function is fy, ,,. Therefore p*(V, d) lies at intersection of
the affine functions fy, ,, and f\, .,. In order to find the intersection of f, ,,
and fy, u,, the equation fy, ,, (z*) = fi, ,(2*) must be solved, which gives
Tt = (d_l)(fo)(QdNH) and p*(N,d) = 2121?&1'

In conclusion, when N > 2d+ 3 then p*(N,d) = ﬁ, and when N < 2d+1

then p*(N,d) = 22(1(51—:—11’ which is equivalent to the statement of the theorem.

5.3.4 Optimal value

Using Theorem 5.4 and Theorem 5.7, the dual optimization problem Fq. (5.4)
has solution,

p*(N,d) = {m if d > N or either d or N is even

min {22‘11\?“;1, =} if N >dand both d and N are odd.
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Hence p*(V, d) is decreasing with respect to N, but it is not monotonic with respect

to d.

Slater’s condition for strong duality of SDP holds true in this case, from Sec-
tion. 5.3.1, hence both optimal values of the optimization problem Fq. (5.1) and
the dual optimization problem Fq. (5.4) are equal, i.e. p(N,d) = p*(N,d). The first
values of p(N,d) are summarized in the following table (in OJ the values of p(N,d)
for which the isotropic states p. are separable) :

a4 2 3 4 D 6 7 8 9
2 1 1/3 s 15 1/s Vg 1 /g
3 1 The Y3z Ts s Thy 17 1/g
4 1 1/3 1/3 /s 1/5 /7 /7 /9
5 1 /3 s 1l/sp 15 Alfm  1/7 11/
6 1 1/3 s 15 1/s Ve o Yz /9
7 1 1/3 3 s 15 B5/s3 17 15/197
8 1 1/3 s s 1/5 Yz r /g
9 1 1/3 1/3 /s 1/5 /7 17 19/163

In general, it is not known which quantum state p gives the optimal value p(N, d),
but using the commutation relation Fq. (5.3), it must be in the algebra,

Spanc {¢(0) ’ ocE€By}.

For example when N = 3 and d = 3 the optimal quantum state p for the optimi-

sation problem Fq. (5.1) is :

1
57 |

p:

2 R
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(a) N >2d+3 (b) N<2d+1

FIGURE 10 — The optimal value of the dual optimization problem lies at the
intersection of the set of affine functions f) ,(x). When N > 2d+3 (Figure 10a,
with N =9 and d = 3), then p*(N,d) = g(A\;). When N < 2d + 1 (Figure 10b,
with N = 5 and d = 3), then p*(N,d) lies at the intersection of fy, ,, and
fa1,ue- In B the max over all affine functions, in B the affine functions from the
set I', and in M the affine functions from the set 2\ I,
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This Appendix provides a comprehensive overview of the fundamental principles
of representation theory that are used throughout the present thesis. Its aim is to
focus primarily on the investigation of representations of finite groups, with a specific
emphasis on the symmetric group, and on those of infinite matrix groups, with a
specific emphasis on the unitary group.

The sections devoted to finite groups provide a complete set of proofs, while more
detailed treatments of the subject can be found in the books [FH13; Ser—+77; Sagl3;
Jam06]. Regarding matrix groups, only the principal results are presented, with books
[GWO09; HH13; BT13; Bak03; Bum+04; Ada82; Sim96| serving as references for
the corresponding proofs. A thorough investigation of the representation theory with
a particular emphasis on its application in the domain of physics, may be found in
the books [Lan12; Boe+70; Zhe73; Ste95; Tun85|.

An alternative approach to address the representations of the symmetric group,
which has been proposed by A. Okounkov and A. Vershik, can be found in [VOO05;
CST10].

A.1 Finite groups

A.1.1 Representations of finite groups

Let G be a finite group, a representation of G is a pair (p, V'), where V is a
complex vector space with dimension d and p : G — GL(V) is a group homomor-
phism, i.e. p(g - h) = p(g)p(h) holds for all g and h in G. Specifically, p satisfies
the condition p(1g) = I, where [ is the identity matrix on V. As a corollary of this
property, it follows that p(g’l) = p(g)™! for every g € G.

Consider two representations (p, V) and (o, W) of G, an intertwining map
between these representations is a linear map ¢ : V' — W that satisfies ¢ o p(g) =
o(g) o ¢ for all g € G. If such a map is an isomorphism, then the representations
are said to be equivalent, and p(g) = ¢ oo(g) o ¢ for all g € G. The set of all
intertwining maps between (p, V') and (o, W) is denoted Hom (1, 117), and forms a
complex vector space.

If (py,V) is a representation of G, then the dual representation (py-,V*) is

defined for all g € G by
-

pv+(g) = Pv(g_l) )

where -7 denotes the transpose.
The natural bilinear pairing <-, > between complex vector spaces V and V* is
defined as < f,a:'> = f(x) for all z € V and f € V*. Then, the dual representation
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(pv+, V*) preserves this natural bilinear pairing, specifically, <pv* (9)f, pv(g)x>
<f,x> holds for any g € G and for all z € V and f € V*.

Example. Consider a finite group G of order n, and let (p, V') be a representation
of G. Let g be an arbitrary element of G, and let A € GL(V') be the image of ¢
under p, i.e. p(g) = A. It follows that

A" =1.

The characteristic polynomial X™ — 1 of A factors into n distinct eigenvalues,
which are the n-th roots of unity. As a result, it can be deduced that A is dia-
gonalizable. Furthermore, if G is an abelian group, all of the matrices p(g) are
simultaneously diagonalizable. In Section A.1.2, the concept of block diagonali-
zation will be explored in the context of non-abelian groups.

Given a finite group G and a representation (p, V) of G, the complex vector
space V' is said to carry the representation p of G. For clarity, it is appropriate to
succinctly refer to the complex vector space V' as a representation of G when no
ambiguity surrounding the mapping p exists. For any ¢ € G and v € V| the action

of g on v can be denoted by ¢ - v, as a compact alternative to the expression p(g)(v).

Remark. The representation of a finite group G is a mapping of the group onto a

set of matrices that operate on a complex vector space V. This mapping preserves
the underlying structure of the group, such that the group law of G is equivalent

to matrix multiplication on V. As a result, the study of representations of G can
be approached using the mathematical framework of linear algebra, rather than

through direct examination of the group itself.

A.1.2 Reducibility

Let V' be a representation of a finite group G, and let W be a subspace of V.
W is invariant under G, that is to say, for all g € G and w € W, the element g -

belongs to W, then W is called a subrepresentation. If V' possesses exactly two
distinct subrepresentations, namely the trivial zero subspace and V itself, then the
representation is said to be irreducible, otherwise the representation is considered

to be reducible.

If

w

Theorem A.1 (Maschke). Let V' be a representation of a finite group G, and
suppose that W is a subrepresentation of V. Then, there exists a complementary

subrepresentation W+ of V', such that V is the direct sum of W and W+, i.e.
V=WaoWwt
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Proof. Let <-, > be any Hermitian inner product on the complex vector space
V. The G-invariant Hermitian inner product <-, > o on V is defined by

<M%:éz@%ww

geG

Then <g ‘U, g - w>G = <v,w>G holds for any g € G.

Let Wt = {v eV | <v,w>G =0 for all w € W} be the orthogonal com-
plement of W with respect to the inner product <~, > o It follows that V' =
W @ W+. Furthermore, for any ¢ € G and for all v € W+ and w € W, the
G-invariance of <-, > o implies

(9-v,w)g = (0,97 w)e =0,

as gt -w € W. Therefore g -v € W+ for all v € W+ and g € G, and thus W+
is a subrepresentation.

In accordance with Maschke’s Theorem A.1, it can be established that if a finite
group G possesses a reducible representation, it must necessarily be decomposed
into the direct sum of at least two subrepresentations. These subrepresentations
may in turn be further decomposed into further direct sums, if they are themselves
reducible. This process of decomposition may be repeated until the representation
is fully decomposed into the direct sum of irreducible representations of G. This
result holds true for any finite group and is referred to as the concept of complete
reducibility of finite groups.

Remark. Maschke’s Theorem A.1 asserts that for any finite group G and its
representation (p, V'), the matrices p(g) for all g € G are simultaneously block-
diagonalizable. Given the decomposition of the underlying complex vector space
Vinto V. =W @ W+, where W is a subrepresentation of V, it follows that for
each g € G, the matrix p(g) block-diagonalizes as

p(g)z(pwo(g) " )

pw(9)

Here, pw(g) and py1(g) are the restrictions of p(g) onto W and W+, res-
pectively. This result highlights the crucial property of simultaneously block-
diagonalizability of matrices in representation theory.
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Maschke’s Theorem A.1 plays a crucial role in the field of representation theory
of finite groups. The theorem states that every representation of a finite group can
be decomposed into a direct sum of irreducible representations. This implies that to
comprehend any representation of a finite group, it is sufficient to have a complete
understanding of its irreducible representations. This result leads to the fundamental
question of determining the number of irreducible representations for a given finite
group, which is addressed in Section A.1.3.

Lemma A.2 (Schur). If V and W are two irreducible representations of a finite
group G, and ¢ € Homg(V,W) is a nonzero intertwining map, then ¢ is an
isomorphism.

Proof. Let v € ker ¢, then for all g € G, since ¢ is an intertwining map it follows
that

g9-6(v) =¢(g-v) =0

Thus ker ¢ is a subrepresentation of V', and since V is irreducible and ¢ is
nonzero, necessarily ker ¢ = {0}. Therefore ¢ is injective.

Conversely, let v € V| then for all g € G, since ¢ is an intertwining map it
follows that

g9-9(v) = ¢(g-v) € Imo.

Thus Im ¢ is a subrepresentation of W, and since W is irreducible and ¢ is
nonzero, necessarily Im ¢ = W. Hence ¢ is surjective.

Schur’s Lemma A.2 is a foundational principle in the field of representation theory.
It has two particularly noteworthy implications for a finite group G.

Firstly, if V' is an irreducible representation of a G, and ¢ belongs to Homg(V),
then ¢ is a homothety, meaning that ¢ is proportional to the identity matrix, with

a scalar factor A € C, i.e.
d=\-1I.

Secondly, if V' is a representation of GG, there exists a unique decomposition of V'
into a direct sum of non-equivalent irreducible representations, expressed as

VeVPg.. o VIm™

where n; is referred to as the multiplicity of the irreducible representation V;.

Remark. In the decomposition of complex vector space V as V ~ V" @ ... @
V2™ both the subspaces V; and the multiplicities n; are unique. However, it
must be noted that the direct sum decomposition of each V;*™ into n; copies of
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I V; is not guaranteed to be unique in general.

For any finite group G, there is a unique, up to isomorphism, representation
referred to as the trivial representation, which is invariant under the action of all
elements of GG. This representation is characterized by the property that all elements
of G act as the identity. Furthermore, this representation is one-dimensional, and
thus irreducible.

Let V be a representation of G. The invariant subspace of V' with respect to G,
denoted as V(;, can be defined as follows :

Vg = {vGV‘g-v:v,VgGG}.
Then Vi can be decomposed into a direct sum of irreducible representations. In par-

ticular, each summand of this direct sum is isomorphic to the trivial representation.

Proposition A.3. Let V' be a representation of a finite group G. Consider the
map ¢ -V — V defined as follows : for any v € V,

1
¢(v) = |—G|ZQ'U~

geG

Then ¢ is a projector onto V.

Proof. Let v € Vg, which implies that ¢(v) = v according to the definition of
V. As aresult, Vg C Im ¢. For any v € V, the action of any element g € G on
¢(v) results in g - ¢(v) = ¢(v), thus Im ¢ C V. Furthermore, for all v € V|

1
¢op(v) = WZZ(Q%)W
geG geG
G|
= — g./U
|G|29§

= ¢(v),

which implies that ¢ o ¢ = ¢.

A representation V' of a finite group G is considered to be unitary if there exists
a Hermitian inner product <', > defined on V' such that the property of unitarity
is satisfied, that is, for all ¢ € G, it holds that <g-u,g . v> = <u,v>. Given any

Hermitian inner product <-, > in V, a new Hermitian inner product < > ., can be
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defined on V as follows :

<u,U>G;:|%|2<g.u,g.v>.

gelG

Then for all g € G, it holds that <g ‘U, g - U>G = <u,v>G. This means that every
representation of a finite group can be considered to be unitary with respect to

<'7'>G'

Example. Let G3 be the symmetric group over 3 elements, and V' be the complex
vector space C? with basis e, es and e3. The natural representation of G
associates each element ¢ in &3 with its permutation matrix P,. This matrix
represents the permutation of the 3 coordinates of V' according to o. Then the
invariant subspace Vg, is the one-dimensional subspace :

Spanc(1,1,1).

Let V be an irreducible representation of a finite group G, and consider any
nonzero vector v in V. It follows that v generates V under the action of G, that is,
G - v = V. Otherwise, if the orbit GG - v were a proper subspace of V', then by the
definition of irreducibility, G - v would be an invariant subspace of V', contradicting
the assumption that V' is irreducible.

A.1.3 Character theory

Let (p, V') be a representation of a finite group GG. The character of (p, V) is the
map Yy : G — C defined on g € G as follows :

xv(g) = Tr [p(g)].

A class function on G is complex function f that remains constant on the conjugacy
classes of G, i.e. f(h g - h'l) = f(g), for all g,h € G. The collection of all class
functions on G forms a complex vector space with dimension equal to the number
of conjugacy classes of GG. Due to the cyclic property of the trace, the characters are
class functions. The concept of characters plays a central role in the representation
theory of finite groups. It provides a means of calculating important quantities, such
as the dimension of a representation. For instance, let V' be a representation of G,
and let ¢ be the projector onto Vg, defined in Proposition A.3, then xy (1g) = dim V/
and yy(¢) = dim Vi, where xy (¢) is defined linearly on each summand of ¢.
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Proposition A.4. Consider two representations, (py, V) and (pw, W), of a fi-
nite group G. Then

Xvew = Xv + Xw, Xvew = Xv ' Xw, and Xy = Xv,

where ~ denotes the complex conjugate.

Proof. Let g be in GG. By the properties of the trace,

xvew(9) = Tt [pv(9)] + Tr [pw(9)]
xvew(9) =Tt [pv(9)] - Tt [pw(g)]-

Then yy(g) = Tr [pv(g)] is the sum of the eigenvalues of the diagonalizable
pv(g). Furthermore, since the eigenvalues, \;, of py(g) are roots of unity, it
follows that the inverse of each eigenvalue is equal to its complex conjugate,
i.e. \;t = ). Finally

xv-(g) = Tr [Pv(g_l)} = xv(9)-

Corollary. Let (py,V) be a representations of a finite group G, then xv(g) =
Xv (g’l), forallg e G.

From the character of a tensor product and a dual space, the isomorphism
Hom(V,W) ~ V* @ W between two finite dimensional complex vector spaces V
and W, implies

XHom(V,W) = XV * XW-
Consider a finite group G and the set of class functions defined on it. Let the

Hermitian inner product < > ., on this set of class functions be defined as follows :
given two class functions f and ¢g on G, then,

([,9) = ﬁ > Flg) - h(g).

Theorem A.5. Given a finite group G, the characters of its irreducible repre-
sentations serve as an orthonormal basis for the space of class functions of G,
with respect to the Hermitian inner product <-, ->G.
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Proof. Let V and W be two irreducible representations of G. By Schur’s
Lemma A2, the dimension of Homg(V, W) is either 1 if V ~ W and 0 other-
wise. But the dimension of Homg(V, W) is also equal to the character of the
projector onto (V* ® W)G. That is

v lg) (g) = 1 ifVW
G| XVAG) XwAg) = 0 otherwise.
Thus the characters of the irreducible representations of G are orthonormal
with respect to the Hermtitan inner product <-, > -
Hence, the number of irreducible representations of G is finite, and in fact
smaller than the number of conjugacy classes of G. Let (pvl., V}) denotes the
irreducible representations of G, and xy, the corresponding characters. Define

V = Spang {Xw};

the span of these characters over the field of complex numbers.
Let W be the complex vector space of all functions from G to C. The basis
of this complex vector space are the elements d,, where g € G, defined on all

h € G by
1 ifg=nh
o0,(h) =
g( ) {O otherwise.

Let g € G and define the representation of G on W by (g- f)(h) = f(g7' - h),
forall fe W and h € G.

Let f € V+ be a class function in the orthogonal complement of V, for all
irreducible representations V; of GG, define the linear map ¢, : V; — V; by

¢i = Zf

gEG

Let h € G, then since f is a class function it holds that

pvi (1) - ¢: - pvi(h |Zf cpv,(h™-g-h)
geG
th g-h") - pv(9)
geG
:¢i7
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and in particular ¢; € Homg(V;). From Schur’s Lemma A.2 there exists A € C
such that ¢; = A - I, with the equality Tr [qﬁ,} = X -dimV;, that is

1

:m<f,xw>g~

Thus A = 0, since f € V. In particular, from the decomposition into a direct
sum of irreducible representations W ~ V"™ @ ... @ Vk@”’“, it holds that

Zf (9 615) = |G‘Zf

gEG geG

=0.

But since {(5 ’ g€ G} forms a basis of W, necessarily f(g) = 0 for all g € G.
Thus V+ = {0}.

Corollary. Let V be a representation of a finite group G. The representation
V' is arreducible if and only if <XVaXV>G = 1. Otherwise, V' decomposes into a
direct sum of irreducible representations V. ~ V" @ ... @ V,fB"’“, with

XV?XV>G Zn and <XV»;7XV>G =n;.

In light of Theorem A.5, it has been established that the cardinality of the set
of irreducible representations of a finite group is equal to the cardinality of the set
of conjugacy classes of this group. The orthogonality of characters of irreducible
representations of the finite group G serves as the foundation for constructing the
character table of GG, which assigns to each irreducible representation of GG a unique
collection of numbers, namely the characters of each conjugacy class of G. Additio-
nally, given a representation V' of a finite group, with its decomposition into a direct
sum of irreducible representations V ~ V*"' @ ... @ V,fB”’“, the character x; can be
used to determine the multiplicity n;, i.e., the number of times a particular irreducible
representation V; appears in the representation V.
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Despite Theorem A5, in general for a finite group G, there is no known corres-
pondence between the conjugacy classes of G and the irreducible representations of
G. However, in Section A.1.4, this correspondence will be explicitly demonstrated
for the specific case of the symmetric group &,,.

Consider a finite group G. The group algebra of G, denoted by C[(], is the
complex vector space with the elements of GG as its basis. The multiplication in
C|@G] is defined as the group law of G on the basis. The regular representation
of G is obtained by considering C[G] as a representation, where for all ¢ € G and
T =) ,ccCn-han element of C[G], the action of g on = becomes,

g-x:Zch~(g-h) :ZC(gfl,h)'h.

heG heG

Remark. In this formulation, the group G serves as both the complex vector
space of the representation as the group algebra, and the group homomorphism
through its group law.

Consider a finite group G. For any element g € GG, the action of g on G through the
group law results in a bijective mapping. It follows that the regular representation
of ¢ has no fixed points except in the case where ¢ is the identity element 14 of
(G. Additionally, all elements of GG in the regular representation are represented as
permutation matrices.

Proposition A.6. Let C[G] be the group algebra of a finite group G, and consider
ClG) = V" @ -+ @ V,Z™ its decomposition into a direct sum of irreducible
representations V; with multiplicities n;. Then for each irreducible representation
Vi, its multiplicity in C[G] is equal the dimension dim V;.

Proof. The character of ¢ € G for the regular representation is equal to the
cardinality of the set of fixed points of the action of g on G, thus

G| ifg=1lc
0 otherwise.

Xciel(9) = {

Consider an irreducible representation V;, which appears in the decomposition
of the group algebra C[G] as follows : C[G] = V®" @ --- @ V,¥™ then

;i = (Xvi» XCld]) g
1
e > xvi(9) - xee(9)

geG
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1
= @Xw(lc) Pslelete)

= dim V.

Corollary. Consider the group algebra C|G| of a finite group G, and its decompo-
sition into a direct sum of irreducible representations C[G] ~ V¥ @ .- @ V™.
Then, it follows that :

dim C[G] =) _ dim(V;)”.

The decomposition of the group algebra C[G] of a finite group G, into a direct
sum of irreducible representations is a powerful tool for understanding the structure
of finite groups, and the equation

(C[G] ~ Vvleadim\/l DD ‘/k@dikay
provides important information about the size and multiplicity of irreducible repre-

sentations in the regular representation.

Theorem. Let C|G] denote the group algebra of a finite group G, and let C|G| ~
VE @ - @ V,E™ be the decomposition of C[G] into a direct sum of irreducible
representations. For each irreducible representation W of G, there exists an index
i€ {l,...,k} such that W is equivalent to V;.

Proof. Let U,V and W be three complex vector spaces of finite dimension, and
define the inclusion and projection maps

VSVeWw =W,

Ly LW
onallveV and w € W by
v (v, w) — v wiv—v+0
w : (v, w) — w tw w— 0+ w.

Now let GG be a finite group, and assume that U,V and W are representations
of GG. Using the previous inclusion and projection maps, the following isomor-
phisms holds :

Hom (U, V & W) ~ Hom(U, V) & Hom(U, W)
Homg(U, V & W) ~ Homeg(U, V) ® Home (U, W).
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Then, in the decomposition of C[G] into a direct sum of irreducible repre-
sentations,

k
Homg (C[G], W) ~ QB Home (V;, W)®™.
=1

In particular, the equality of dimensions

k
dim Homg (C[G], W) = @nz - dim Homg (V;, W),

=1

holds, and from the Schur’s Lemma A.2) dim Homg(V;, W) = 1 if and only
if V; ~ W, otherwise dim Homg(V;, W) = 0. It follows that the dimension of
Homg (C[G], W) is positive if and only if there exists an index i € {1,...,k}
such that the irreducible representation W is equivalent to V;.

Let f : Homg(C[G],W) — W be the linear map defined on h in
Homg (C[G], W) by f(h) = h(1lg), and let such h in Homg (C[G], W) satis-
fying f(h) = 0, then for all g € G,

h(g) = h(g-e) =g h(e) =0,

thus f is injective. Let € W and consider the function h : G — W defined on
g € G by h(g) = g-z, thus h can be extended linearly on C[G], and in particular
h € Homg (C[G], W), but since f(h) = =, then f is surjective. Therefore f is
an isomorphism and the equality of dimensions

dim Homg (C[G], W) = dim W,
holds. In particular dim Homg (C[G], W) is positive.

The group algebra C[G], of a finite group G, provides a unified way to study the
representations of G by encapsulating all the irreducible representations within its
structure.

Example. As established in Theorem A.5, the number of irreducible represen-
tations of &3 is equal to the number of its conjugacy classes, in the present case
3. These three irreducible representations consist of the trivial representation,
the sign representation, and the standard representation. The sign repre-
sentation is the one-dimensional representation on which any ¢ € &3 is sent to
sign(o), where sign(o) is the signature of the permutation . The standard re-
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presentation is the two-dimensional orthogonal complement of Spang(1,1,1) in
the natural representation. Then

(C [63} =~ ‘/trivial S ‘/sign D V;%andard‘

The character table of G3 is defined as the table with the irreducible repre-
sentations of &3 as its rows, and the conjugacy classes of &3 as its columns.
The entries in the table are the character values for the corresponding irredu-
cible representations and conjugacy classes of &3. The conjugacy classes of S3
are {1s,},{(12),(13),(23)} and {(123),(321)}. The character table of &3

becomes :

Xtrivial 1 1 1
Xsign 1 —1 1
Xstandard 2 0 -1

Note that as expected from Theorem A5, the rows are orthogonal, with respect
to Hermitian inner product <', > -
Similarly to Propositition A.3, given a finite group G, it is possible to define a
projector onto each direct sum of equivalent irreducible representations V;*™ that
appears in the decomposition of its group algebra, C[G], into a direct sum of ir-
reducible representations, C[G] ~ V" @ --- @ V™. The direct sum of equi-
valent irreducible representations V;*™ in the decomposition of its group algebra
ClG) = VE" @ .- @ VI™, are called the isotypic components.

Theorem A.7. Given a finite group G and its group algebra C|G| decomposed
into a direct sum of irreducible representations C[G] ~ V¥ @ --- @ V™, for
each irreducible representation Vi, let the map ¢;, defined on C[G] by

> xul9) g

geG

dim V;
o=

|
Then ¢; is a projector onto Vl@”i.

Proof. Let h € GG, then since yy; is a class function it holds that

dim V; o _ i
1|Ig| > xvlg)- (b g h)
geG

h-l.@.h:
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dlm Vi
|Gl

= ¢i7

S xw(hog-ht) g

geG

and in particular ¢; € Homg (C[G]) Consider the decomposition of the group
algebra C[G] into a direct sum of irreducible representations C[G] ~ V™ @&

&) Vk@nk, for all j € {1,...,k}, from Schur’s Lemma A.2, the restriction of
¢; to V; is an homothety A - I, with A € C, such that from Theorem A.5

dlm V;
A= |G| - dim V; Vi Z Xvilg (9)

d1m Vi
d1m Vi

{1 if Vi~V

<XVZ7 XV; >G

0 otherwise.

Thus, the restriction of ¢; to V; is the identity if V; is equivalent to V;, and
the zero map otherwise. But, since V; is a representation, for all ¢ € G, the
action of g on Vj is a subspace of V;. That is, the map ¢; does not cause any
intertwining between the representations V;.

As a consequence, ¢; is the identity on Vani and the zero map on Van" such
that ¢ # 7, and thus ¢; is a projector.

A.1.4 Representations of G,

The symmetric group, denoted as &,,, is the group of order n! consisting of
permutations of the set {1,...,n}, as illustrated in previous examples. The cyclic
notation convention is employed throughout this thesis. For instance, (1 2 3)(4 5)

indicates the permutation
1 23 45
2315 4)

of &5. According to Theorem A.5, the number of irreducible representations of a
finite group G is equal to the number of conjugacy classes in GG. For the symmetric
group G,,, the conjugacy class of a permutation is uniquely determined by the length
of its decomposition into a product of disjoint cycles, which is referred to as the
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cycle type of the permutation. The cycle type of a permutation can be described
by an integer partition of n, where each part represents the length of a cycle in the
permutation. For instance, the permutation (12 3)(4 5) in &5 has cycle type (3,2).
It is worth noting that this justifies the use of cyclic notation in this thesis.

The notation A - 7 is used to represent an ordered partition of the positive integer
n into [ parts, denoted by A = (Ay,...,\;). This partition is defined as a collection
of non-increasing positive integers that sum up to n, i.e.

N> N2> and Z)\i:n.

A partition A - n may be represented as a Young diagram, which is a collection
of n empty boxes arranged in left-justified rows such that the i-th row contains
A; boxes. This representation is illustrated in Example A.8. The conjugate of the
partition A, denoted )\, is the partition corresponding to transposing the Young
diagram representing A. A Young tableau is a Young diagram where each box is
assigned an integer between 1 and n. A Young tableau is classified as standard if
the entries in each row and each column are strictly increasing, semistandard if the
entries in each row are weakly increasing and the entries in each column are strictly
increasing, and without repetitions if each entry appears exactly once. Notably,
standard Young tableaux are without repetitions. The canonical Young tableau
is a Young diagram that is filled with consecutive integers from left to right and top
to bottom.

Example A.8. Consider the permutation 0 € Gy, expressed as a product of
disjoint cycles, arranged in non-increasing order, by (123 4)(56 7)(8)(9). The
cycle type of ¢ is the partition A - 9 given by A = (4,3, 1, 1), where the i-th entry
of A\ denotes the length of the i-th cycle in the disjoint cycle decomposition of
0. Moreover, the partition A can be represented using a Young diagram, which
consists of 4 rows with 4, 3, 1, and 1 boxes, respectively

The conjugate of the partition A\, namely X is represented using a Young diagram,
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which consists of 4 rows with 4, 2, 2 and 1 boxes, respectively :

Two instances of Young tableaux that correspond to the partition A\ are provided
as examples

3|4 314

and

1
2
3

QU = W

4

The previous Young tableau presented on the left satisfies the standard definition,
whereas the one on the right solely complies with the semistandard definition,
primarily due to the weakly increasing gray box. Neither of them adheres to
the requirement of being without repetitions. For the partition A, the canonical
Young tableau can be expressed as follows

314

1
5
8
9

It is both standard and thus without repetition.

Consider a partition A - n and a Young tableau T without repetitions, on this
partition. An action of the symmetric group &,, on the Young tableau 7' is defined as
follows : given a permutation o € &,,, the action of ¢ on T is obtained by permuting
the boxes in T" according to the permutation induced by the entries of the boxes. For
o € 6, the action of ¢ on T' is denoted by o (7).

A permutation o in &,, is said to preserve each row of T if each box of a given
row is permuted by o on that same row. Similarly, a permutation ¢ in &,, is said to
preserve each column of T if each box of a given column is permuted by ¢ on that
same column. Two subgroups of G,, can be defined as the sets of permutations that
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preserve the rows and columns of 7', namely,

Ry = {0 €6, ’ o preserves each row of T}

Cr = {0 €6, ’ o preserves each column of T} )

Consider two elements of the group algebra C [Gn] , the row and column symmetrizers
of a given Young tableau T', defined as follows :

ro o= E o

c€RT

cr = Z sign(o) - o.

oceCr

The Young symmetrizer associated with a given Young tableau 7' is an element
sp of C[Gn], defined as the product of the row and column symmetrizers of T, i.e.
st = rp-cp. It is worth noting that the row and column symmetrizers satisfy certain
properties under the action of the symmetric group &,,. Specifically, for any o € &,,,

o-rp-ot= re(ry and o-cp- ol = Co(T)-

As a consequence, it follows that o - sp- 0! = S6(T)-

Example. Consider a partition A F 3. When A = (3). In the case where A = (3),
the associated canonical Young tableau 7' is a single row with entries 1, 2, and 3

T'=|1(2]3

As the identity permutation is the unique element of G5 that leaves each column
of T unchanged, the Young symmetrizer can be expressed as

In the case where A = (1,1,1), the associated canonical Young tableau T is a
single column with entries 1, 2, and 3

T —
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As the identity permutation is the unique element of &3 that leaves each row of
T unchanged, the Young symmetrizer can be expressed as

The two preceding Young symmetrizers correspond, to within a constant factor
of %, to the projectors onto the irreducible representations Viivial and Vg, in the
decomposition of C [65] into a direct sum of irreducible representations :

(C [63} =~ ‘/trivial s> ‘/;ign SP ‘/s%andarda
as established by Theorem A.7.

In order to obtain a comprehensive collection of inequivalent irreducible represen-
tations of the symmetric group &, it is necessary to first establish several requisite

technical lemmas.
Lemma A.9. Let A\ = n be a partition of n, let T be a Young tableau on A\

without repetitions, and let © € C[Gn}. Then, there exists p € C such that the
following equation holds : sy -x - st = p - sr.

Proof. To begin, it will be proven that if an element y € C[Gn} satisfies the
condition o -y - 7 = sign(7) - y, for all permutations o € Ry and 7 € Cr,
then it follows that y = p - sp, for some scalar 4 € C. Consider such an element
Y =) rce, CrT of the group algebra C [6,1} , then for all permutations o € Ry
and 7 € Cr,

J-(Zcﬂ-w) T = Zcﬂ-(a-w-T):sign(T)- Zcﬂ-ﬂ.
€6, €6, TEGn

This implies that, c¢(.r.r) = sign(7) - ¢, for all permutation 7 € &,,. Then in
particular case if the identity permutation, c(.r) = sign(7) - c14, , and

Z Cor) - (0-T) =1, - Z sign(7) - (o - 7)

o€RT o€RT
TECT TECT
= ClGn ° &7
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Assuming that ¢, = 0 when 7 & {(a - T) ‘ o€ Rrand 7 € CT}, and given
that Rr N Cp = {lgn}, it follows that y = Cle, ° ST Consider a permutation
T & {(0 - T) | o€ Ry and 7 € C’T}, and suppose that there exist no distinct
i,7 € {1,...,n} such that ¢ and j belong to the same row of 7" and the same
column of 7(7T). Then, all entries in the first row of 7" must appear in distinct
columns of 7(T'). Hence, there exist two permutations o € Ry and 7 € Cn(T)
such that the first row of o(T) and (7 - 7)(T) are identical. By iterating this
process on the remaining rows of 7', it follows that there exist two permutations
o € Ry and 7 € Cr(p) such that o(T") = (7-m)(T). Consequently o = 7 - and
TE {(a - T) ‘ o€ RrandTe C’T} since Cr(py = m - Cr - w . Therefore, there
exists a transposition (i j) € Ry N Cr(r), and in particular (i j) € Cr¢p). Hence,
(ij) =77 7! for some permutation 7 € Cr, then equality

Ce, = (1) (1) =(ij)-m-7 77,

holds, and finally 7 = (i j) - 7 - 7. Now since (i j) € Ry and ¢(g.r.r) = sign(7) - ¢,
for all permutations o € Ry, 7 € Cp and 7 € &,,, it holds that

Cr = C((ig)m)
— sign((i j)) < Cr

= —Cq,

which implies that ¢; =0 when 7 € {(¢-7) |0 € Ry and 7 € Cr}.
Let 0 € Ry and 7 € C7p, then, the following equations hold :

o-rp=rp-oc=rp and 7T-cr=cp-T=-sign(7) - cr.

Additionally o - sy -7 = sign(7) - sp. Furthermore, for y an element of the group
algebra C [Gn], it follows that

o-rp-y-cr-T=sign(r) - rr-y-cr.

It is inferred that there exists a p € C for which the equality rr-y-cp = p- sy
holds. Furthermore, when y = ¢y - x - rp,

S X ST =T -Cp-XT T -Cr = - ST.
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Corollary. Given a partition A\ = n, and an arbitrary Young tableau T on A
without repetitions, the product of the corresponding Young symmetrizer sp is
nonzero, i.e. s - sy # 0.

Lemma A.10. Let A Fn and p = n be two distinct partitions of n, let Ty and
T, be two Young tableaur without repetitions on partitions X\ and p, respectively,
and let x € C[Gn}. Then st, - x - s, = 0.

Proof. 1t is possible to assert, without loss of generality, that by interchanging
A and p, there is a k € {1,...,n} for which Ay > u; holds, and for all i €
{1,...,k — 1}, the equalities A\ = py, holds.

Suppose that there exists no pair of distinct indices 7,5 € {1,...,n} such
that ¢ and j occupy the same row in 7 and the same column in 7). Under this
condition, it follows that every element within the first row of T) occupies a
unique column within 7). When k£ > 1, there exist two permutations o € Ry,
and 7 € Cr, such that o(T)) and 7(7},) have identical first rows. By iteratively
applying this procedure to the first k& — 1 rows of T\ and 7}, it follows that
there exist two permutations o € Ry, and 7 € Cp, such that o(7)) and 7(7},)
have the same first £ — 1 rows.

The equality Ax > 0 holds, otherwise A = . Consequently, the k-th row of
o(T\) contains Ay entries, which appear in Ay, distinct columns of 7(7},), and are
located between the k-th and n-th rows of 7(7),). However, this arrangement
cannot occur since Ay > . Therefore, there exists a transposition (i j) €
Ry, N Cr, such that

(Z j) T, =TTy and CT# . (Zj) = _CTN-

Furthermore, since (i j) - (¢ j) is the identity element in the symmetric group
S, then

er, 11, = cr, - (¢ 4) - (1) -y, = —ex, - Ty,

which implies that cg, - rp, = 0.

Let o be an element of the symmetric group &,,. Then cg, - 0 - 77, - ol =
cr, - To(ry) = 0, as the previous equality is independent of the entries of T).
Thus, it follows that cg, -0 -7, = 0 for any permutation o € &,,. Consequently
for all z € (C[Gn} it follows that cz, - @ - rr, = 0 and also sg, - @ - sp, = 0.

Corollary. Given two distinct partitions X = n and p F n, and two arbitrary
Young tableaux without repetitions on partitions A and p, respectively, the product
of the corresponding Young symmetrizers st, and st, is zero, i.e. st, - sp, = 0.
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Let A = n be a partition of n, and let T be a Young tableau on A without
repetitions. The operation of right multiplication by the Young symmetrizer st on the
group algebra C [Gn} ,1e., C [671} -s7, defines a complex vector space that constitutes
a representation of the symmetric group &,, through its left action on this space.

Lemma A.11. For any partition A = n, and any Young tableau T on \ without
repetitions, the representation C[@n] - st 15 an irreducible representation of the
symmetric group S,,.

Proof. Consider two permutations ¢ € Ry and 7 € Cp. Then, their product
o -7 is equal to the identity element 1, if and only if both o and 7 are equal to
lg, . This equivalence is due to the fact that Ry N Cr = {16n}. Consequently
st # 0 and (C[Gn] - ST 1S nonzero.

Consider V' as a subrepresentation of C[Gn] - 87, then using Lemma A.9,
for all z € V there exists a scalar ;1 € C such that sp -z = p - sp. Thus

ST'VC(C'ST.

Since C - sy has dimension one, the subspace sy - V is either equal to C - sp
or to the zero space {0}. In the former case, the inclusion C[&,] -sp-V CV
follows, since V' is a representation of the symmetric group &,,, and the equality
V= C[Gn} - st holds. Similarly, in the latter case, since V' is a representation
of the symmetric group &,,, the inclusion V -V C V holds. Moreover, as V'
is a subrepresentation of C[Gn} - sy, 1l.e., V C C[Gn} - s7, it follows that the
product of C[Gn} - sy and V' yields the trivial space {0}, and the product of
V with itself also yields {0}, namely C[&,] - sy - V = {0} and V - V = {0}.
Consider an element x in the subrepresentation V', defined as z = ST
The adjoint of z, denoted as z*, is defined by

A— E [

ogeG,

SCTS Crr

Then both z* and = - z* belong to V. As V- V = {0} it follows that = - 2* = 0.
Consequently, for all permutations o € &, it holds that ¢, -x* = 0. In particular

R — g Cy -0 =0.

UEGn

Therefore z = 0, and thus V' = {0}.
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Lemma A.12. For every partition X\ = n, every Young tableau T on A\ without
repetitions, and every permutation o in the symmetric group S,,, the represen-
tations C[Gn} - st and C[Gn} * So(1) are equivalent.

Proof. Consider the linear map ¢ from (C[Gn - st to (C[Gn} - So(1)- Given
T € C[(‘Sn] - s7, with z = y - sy for some y € C 6,1}, then ¢ is defined on x by
¢(x) =z - o', Observe that

$(a)=z-07!
:y'ST'O:I
:y.o‘fl.o-.sT.o-f
:y.o'_l.so_(T)

It follows that ¢(z) belongs to C [Gn} * Sq(1), and that ¢ is an isomorphism.
Consider a permutation 7 € &,, and x is an element of (C[Gn} - s7. Then, it
follows that

po(t-z)=7-2-0"

=70 ¢(z),
and hence ¢ satisfies the property of being intertwining.

Lemma A.13. Let A+ n and pu = n be two distinct partitions of n. Let Ty and
T, be two Young tableaur without repetitions on partitions A\ and p, respectively.
Then, the two representations (C[Gn} - s, and (C[Gn} - 87, are inequivalent.

Proof. According to Lemma A9, it follows that the left action of the Young
symmetrizer st, on (C[Gn] - s7,, Tesults in

ST, ~(C[Gn] -s7, =C-s7,.

However, from Lemma A.10, the left action of the Young symmetrizer sy, on
C[Gn} - 87, 1s zero, i.e.
STH : C[Gn] c STy = 0.

As a consequence, two irreducible representations C [Gn} s, and C [Gn} - ST,
are not isomorphic, hence not equivalent.

From Lemma A.12, for a given partition A - n, the representations (C[Gn} - ST
of the symmetric group &,,, are mutually equivalent across all Young tableaux 71" on
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A without repetition, thereby solely dependent on A, and consequently, it is possible
to designate any representation of this type as V.

Theorem A.14. All irreducible representations of &,, can be expressed as V) for
some partition A F n.

Proof. The irreducibility of the representation V) is guaranteed for any partition
A n, as stated in Lemma A.11. It follows from Lemma A.12 and Lemma A.13
that the number of inequivalent irreducible representations V) for some parti-
tions A - n is equivalent to the number of conjugacy classes of the symmetric
group &,,. This number, as stated in Theorem A.5, corresponds to the number
of irreducible representations of &,,.

The Proposition A.6 establishes that upon decomposing the group algebra C [(‘SR]
into a direct sum of irreducible representations, namely C [Gn} ~VPMe...@ Vk@"’“,
the dimension of each irreducible representation V; coincides with its multiplicity n;.

Theorem A.15. Consider a partition A - n. Let V) be the corresponding irredu-
cible representation of a symmetric group S,,. The dimension of Vy is equivalent
to the cardinality of the set of standard Young tableaux associated with ).

Proof. Consider a partition A - n and let f(\) denote the number of stan-
dard Young tableaux associated with A. The standard Young tableaux on this
partition can be ordered lexicographically based on their entries. Specifically,
let T1,T5, ..., Ty be the standard Young tableaux on this partition, ordered
such that T; < Tj if and only if the entries of 7; are smaller in lexicographic
order than those of T}, from left to right and top to bottom. Note that the first
tableau in this order, denoted by T3, is the canonical Young tableau on this
partition.

Let ¢ and j be arbitrary elements of {1, . .,f()\)}, with ¢ < j. Further,
let £ and [ denote the first row and column, respectively, at which the two
standard Young tableaux 7; and Tj differ, proceeding from left to right and top
to bottom. Notably, & and [ cannot be the first row or column, respectively,
since the Young tableaux are standard. Let a denote the entry of T; located
in the k-th row and [-th column, and b denote the entry of 7} located in the
same position.Given that ¢ < j and 7; and 7} are standard Young tableaux, it
follows that a < b. Let m and n denote the row and column, respectively, of
the entry a in T;. By virtue of T} being a standard Young tableau, it cannot
hold that m > k and n > [, as the entries of T} in rows greater than & and
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columns greater than [ are strictly larger than b. Furthermore, it cannot be the
case that m < k, or that m = k and n < [, since T; and 7} coincide on these
rows and columns. Lastly, it cannot hold that m = k and n > [, as T} is a
standard Young tableau and a < b. Thus m > k and n < [ hold necessarily.
Notably, the entries located on the k-th row and n-th column of both 7; and
T; are equal and denoted by c. Consequently, the transposition (a ¢) belongs
to Ry, N Cr;, since a and c share the same k-th row of T; and the same n-th
column of Tj. Then, the equations

(ac)-rry=rr; and cg - (ac) = —cg,
hold. Moreover, as (ac)-(ac) yields the identity element in the symmetric group

Sy,

St; ST, = T1y - C1y; " T’ * C1,)
=rg -cr;-(ac)-(ac)-ro - cq
- _STj * STy,
implying that sz, - sy, = 0.
From Lemma A.12, the irreducible representations C[@n} - 57, and C[Gn] .

st; are equivalent for all i, j € {1, . f()\)}. Let 21, s, ...,z denote certain
elements of the group algebra C[Gn}, such that

By applying the result of Lemma A9 and observing that T} < T; for all

1 € {1 .. )}, the existence of a nonzero u € C is established, such that
Zf(){) x; - Sy, - Sy, = f - x1 - Sy, which further implies that z; = 0. Right
multlphcatlon on both sides of the equation with sy, yields xz; = 0 for all

i€ {1, . ,f()\)}. Consequently, dim V > f(A).

Consider a Young diagram \. Let u be another Young diagram obtained by
either removing a single box from A, denoted as 4 = A — 1, or adding a single
box to A, denoted as g = A+ 1. Then f(\) can be expressed as the sum of f(u)
for all possible Young diagrams p obtained by removing a single box from A,

N = > f(w

p=A—1
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The proof of the identity (n+ 1)f(A) = >_,_,,, f(¢) shall be established

through induction on n. The base case n = 0 holds, as f((0)) = f((1)). For
the inductive step, assume n > 0, it follows that

(n+1)f(A) =n-f(A)+ f(N)
=n Y flu)+ N

p=A—1

=Y D f@+ M,

p=A—1v=p+1

wherein the second summand enumerates partitions v = n. There exist two
distinct cases, namely ¥ = X and v # \. Consider the sets Ay and \_, defined
as follows :

/\+:{,u‘u=)\+1}
/\_:{,u‘u:)\—l}.

It is worth noting that for each box within a given Young diagram that may
be extracted such that it does not alter its validity as a Young diagram, a box
can be added to the next row of the Young diagram. Furthermore, it is always
possible to add a box to the first row of the Young diagram. As a result, it
follows that Ay = A_ + 1. The occurrence of the first case, where v = A, is
equal to the cardinality of the set A\_, namely |\_|. Thus

Yo @i =) > f@)+ (A1)

p=A—1v=p+1 pu=A—1v=p+1
VF#EN

=D > @+

u:)\-i-]_ U:}Lfl

2N
= > > fw)

p=A+1v=p—1

= > flw),

p=A+1

concluding the induction proof.
The formula »_,,  f(A\)? = n! shall also be established through induction
on n. As the base case, it is observed that f ((O)) = 1, and hence the formula
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is verified for n = 0. For the inductive step, suppose n > 0, then

DI =D ) FF(w)

AFn AFn p=A—1

= > > fNfw

A-(n—1) p=A+1
=n Y [V
AF(n—1)
=n-(n—1),

concluding the induction proof.

According to Proposition A.6 the following equation is satisfied
>, dim(Vy)? = nl. However, for all partitions A + n, it is true that
dim V), > f(A). Hence, dim V), = f(A).

Example. There exist three partitions of 3, which are denoted as (3), (2,1) and
(1,1,1). Each partition has a corresponding Young diagram

(3) 2,0 (L1

For the partitions (3) and (1,1, 1), there exists only one standard Young tableau,
which corresponds to the canonical Young tableau

1(2|3 and

3

However the partition (2,1) admits a pair of distinct standard Young tableaux,
denoted as follows

2 113
and
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From Theorem A.15, it follows that the irreducible representations V(3) and
Vii,1,1), of &3, have dimension 1, while V5 ;) has dimension 2, as expected. The
determination of the irreducible representations of &3 corresponding to the ca-
nonical Young tableaux T{3),T{2,1), and T{; 1) necessitates an examination of
their respective Young symmetrizers sr, , s, , ,, and s, ,,. This examination is
conducted in conjunction with the construction of V)’s From Theorem A.14,

C[6s] - 515, = C[G3] - (ley +(12) +(13) +(23) +(123) +(321))
C[Ss] - s7,,, = C[63] - (ley — (12) — (13) = (23) +(123) + (321))
C[6s] - s1,,, = C[6s] - (e, + (12) — (13) +(321)

+

~—r

)

The action of the symmetric group &3 on the irreducible representation C [671] .
ST, yields a trivial action. It follows that V(3) is equivalent to Vi,iyia, while the
irreducible representations V(;1 1y and V{2 1) are necessarily equivalent to Vg, and
Vitandard, respectively.

Let C [Gn} ~ V" @ ... @ VE™ be the decomposition the group algebra C [Gn}
of the symmetric group &,, into a direct sum of irreducible representations. By Theo-
rem A.7 the projectors onto the isotypic components V;*™ are given by

LI o

n!
0’6611

Theorem. Let the group algebra C[Gn} of the symmetric group &, and
its decomposition into a direct sum of irreducible representations C[Gn} ~

D, V)\@n*. For each partition A = n, the map ¢, defined on C[Gn} by

dim V;
gb}\ = A Z ST,

n!
T

where the sum 1s taken over all Young tableaux without repetitions on X, s the
projector onto Vo™

Proof. Let 0 € G,,, then
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and in hence ), sy € Homg, <(C [64) Consider the decomposition of the

group algebra C [Gn} of the symmetric group &,, into a direct sum of irreducible
representations C[Gn} ~ P, . VA@M, for all ;4 F n partition of n, from Schur’s
Lemma A.2, the restriction of > . sp to V), is an homothety A - I, with A € C.
From Lemma A.10, if A and p are distinct, then for all z € V,,

ZST'{EZO,

T

and thus the restriction of ) .. sp to V), is the zero map. Let 7\ be any Young
tableau without repetitions on A, then the coefficient of 1g, in sp, is 1, since

RrNCr = {16n}, and thus Tr [ZT ST} = nl. So the restriction of ), sy to
V) is the homothety

n!
: I
dim V)
As a consequence, since ) sy does not cause any intertwining between

the representations V), the map ¢, is the identity on Vfa”* and the zero map

elsewhere, and thus is a projector.

In the previous section, the complex vector spaces associated with the irreducible
representations of the symmetric group &,, were discussed. However, the corres-
ponding matrices representing the permutation elements were not described. The
construction of such matrices is far from trivial, and in fact, there exist a variety of
constructions that may be employed based on the desired properties of the resulting
matrices, i.e. integer matrix components, rational matrix components, or orthogonal
matrices.

A.1.5 Restricted and induced representations

The present Section concerns the correlation existing between a finite group G
and a subgroup H. Can a representation of H be derived from a representation
of G or vice versa? Furthermore, if the original representation is irreducible, what
conclusions can be drawn concerning the derived representation ?

Consider a representation (p,V) of a finite group G, and let H be a subgroup
of G. Given an element h € H, it is worth noting that H is a subgroup of G and
hence h € G. Furthermore, as the representation p induces an action of G on V, it
follows that the action of p also restricts to only elements h € H. The restricted
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representation of (p, V) on the subgroup H is denoted (Res};(p). V) and defined
on the element h € H as follows :

Resf; (p)(h) = p(h).

In the case where (p,V) is an irreducible representation of the group G, it is not
always the case that the complex vector space V' manifests irreducibility as a repre-
sentation of a subgroup H. This can occur when the size of V' becomes too large to
maintain irreducibility with respect to the smaller subgroup H.

If x is the character of the representation (p, V') of G, the restricted character
of the representation Res%(p), denoted Res’;(y), becomes Res%(x)(h) = x(h), for
all h € H.

Example. Let &, be the group of all permutations of {1,2,3,4}. From Sec-
tion A.1.4, the symmetric group &, has 5 conjugacy classes, and consequently 5
irreducible representations, namely

V(4)a ‘/(3,1), V(2,2), V(2,1,1) and V(1,1,1,1)-

Let D, be the dihedral group of order 8, whose elements are the symmetries
of the square, generated by the 7 counterclockwise rotation r and the vertical
reflection s :

Dy=(rs) = {1D4,T, r2, 13, s, sr, sr2,8r3}.

It has 5 conjugacy classes, which are given by

{1D4}, {r,r3}, {7"2}, {37‘,37“3} and {3,37’2},

and as many irreducible representations : Wy, Wy, W3, W, and W5. Then character
table of D, can be expressed as follows

Dy | {1p,} {r,7*} {r*} {sr,sr®} {s,s%}
|1 1 1 1 1
|1 1 _1 1
|1 1 1 _1
w, | 1 | 1 1 1
e |2 0 -2 0 0

As can be inferred from Theorem A5, that the rows exhibit orthogonality with
respect to the Hermitian inner product <-, > Dy By indexing the vertices of the
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square counterclockwise with 1, 2, 3 and 4, starting from upper left corner, i.e.
1 4
2 3

In particular the group D, can be made a subgroup of &,, where the 8 symmetries
of the square become,

(1)(2)(3)(4) | identity
(1,2,3,4) | § counterclockwise rotation
(1,3)(2,4) | 2 counterclockwise rotation
(4,3,2,1) ?’f counterclockwise rotation
(1,2)(3,4) | vertical reflection
(1,4)(2,3) | horizontal reflection
(1,3)(2)(4) | main diagonal reflection
(2,4)(1)(3) | secondary diagonal reflection

In the general case, the restricted representations Resgi(v,\) of Dy, for every
partition A F 4, do not constitute irreducible representations. According to Ma-
schke’s Theorem A1, these representations can be decomposed into a direct sum
of irreducible representations. Specifically,

Resgz‘1 (V(4)) ~ W
&
ReSDi (‘/(371)) ~ W3 D W5
Resgi (‘/'(272)) ~ W1 D W2
Resp! (Via.n)) ~ Wi @ Ws
Resgi (‘/(171,171)) ~ WQ.
The passage from a representation (p, V') of a subgroup H of a finite group G to
the group GG necessitates a more intricate approach. This arises due to the inability
of p to induce an action of G \ H on V. Nevertheless, it is feasible to look at 7/,
the quotient group, comprising elements in the form of g-h with ¢ € G and h- H,
where p(h) exhibits well-defined behavior.

Let V,W be two complex vector space of finite dimension. The complex tensor
product between V' and W, namely V' ® W, is a condensed notation for the explicit
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notation V ®c¢ W. It is worth noting that for any v € V' and w € W, the relation
(c-v)@w=1v® (c-w),

holds for all ¢ € C.

Given a subgroup H of a finite group G, suppose that (p, V) is a representation
of H. In this case, it is possible to define the tensor product complex vector space
ClG] ®cp V as follow : for all g € C[G] and v € V, the following relation,

(g-h)@v=g®h-v),

holds for all ~ € H. The induced representation of (p,V) on the group G is
denoted (Indy;(p), C[G] @ V) and defined on element g € G by

Ind§(p)(g)(x) =g - x,

for all z € C|G] ®cm V.

In order to gain a more comprehensive understanding of the operation of group G
on C|[G] ®cm V, consider a coset representation of G, ie. G =g, - HW---Wg-H,
where W denotes the disjoint union, with ¢g; € G. For any element g € G, there
exists i € {1,...,k} and h € H such that ¢ = g; - h. Consequently, all elements
g®v € C[G] ®cpm V satisfy

gRUv=1(¢9;-h)®v=g® (h-v).

Thus the action of the group G' on the tensor product C|G] ®cpm V' is exclusively
defined for the elements ¢; ® v € C[G] ®cu) V. Specifically, for all g € G, the
representation Ind%(p)(g) takes the form of a k& x k block matrix that corresponds
to the coset representation G = g, - HW--- W g - H. The action of an element g € GG
upon g; ® v € C[G] &cuy V is given by

9-(9:®v)=(g-9:) @
=(g9j-h)®v=yg;®(h-v),
where h is the element of H such that g-g; = g; - h in the coset representation

G=g-HW---Wgi- H. In other words, h is defined as h = gj‘.1 - g - g;- Additionally, it
follows that h acts on a vector v € V' via the representation p(g]’-l -g- gi) (v). Finally,

plat-9-91) plort-9-92) - plo-9-9)

p(gi-9-0) plo?-9-9) . plor® 99k
Ind§ (p)(g) =

p(a" g-01) p(g"-9-92) . p(o:" 9 gr)
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If x is the character of the representation (p, V') of H, the induced character
of the representation Ind%(p), denoted Ind%; () becomes, for all g € G,

Ind%(y) = Tr [Indg(P)(Q)} = ZX(Q{I "9 gi)»

i=1
in the coset representation G =g, - HW---W g, - H.

Example. Let Z/4Z be the cyclic group of order 4 generated by the element z.
Formally, Z/4Z is defined by Z/AZ = {174z, 2, 7%, 2*}. Let Z/2Z the subgroup
of Z/AZ of order 2 generated by 22, i.e. Z/27 = {12/22, zQ}. Consider the one-
dimensional irreducible representation (p, C) of Z/27Z, defined as follows :

p(lz/4Z) =1 and p(z2) = —1.
The induced representation Ind%é?(p) of 7/47 is defined on the tensor product
C[Z/AZ] ®cz/2z) C generated by the vectors

lz/42®1, 2®1, 22®1 and 2°®1.

But by definition of this tensor product over the group algebra C[Z/2Z], the two
following relations hold :

Z2®1:1z/4z® (2’2‘1) =-1- (12/4Z®1)a
and
z3®1:z®(22-1):—1-(z®1).

Thus C[Z/4Z] ®ciz/2z) C is a 2-dimensional complex vector space with basis
174z ® 1 and 2z ® 1. The action of the elements of Z./AZ on the tensor product
C[Z/AZ] ®cz/2z) C, defined with respect to the generator z, is given by

w06 = (7 ).

Let C(G) denotes the complex vector space of class functions of a finite group
G, and C(H) denotes the complex vector space of class functions of a subgroup
H of G. There is an linear map ¢ : C(G) — C(H) given by restriction of class
functions. As linear map between Hermitian inner product complex vector spaces of
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finite dimension, there exists a unique adjoint map ¢* : C(H) — C(G) satisfying

(0°(9): Fe = (9:0(f)) g »
for all f € C(G) and g € C(H).

Theorem A.16 (Frobenius reciprocity). Consider a finite group G and a sub-
group H of G. Let (p, V') and (o, W) be representations of G and H, respectively.
Then

<Indg (xw), XV>G = (xw, Resf; (xv) >H

Proof. By definition of the Hermitian inner product of class functions on finite
groups, the properties of the characters of Proposition A.4, and the restricted
and induced characters in the coset representation G =¢, - HW--- W gx - H,

(Ind§; (xw) XV>G ZI 45 (xw) (9) - xv(9)

geG

E:}:Xw -9+ 91) - xv(9)

gEG@ 1

|G|| |ZZXW< 9:1)") x(o)

ge€G helG

|G|| |ZZXW Loghh) xv(9)-

geG heG

Through a variable substitution, and the explicit definition yy, as the zero class
function on G'\ H,

E:E:XW v(h-g-h |GH E:}:XW ) - xv(9)

g€G heG gEG heG
geG
geH
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=— Y xwl(g) Res§(xv)(9)
= (xw.Resg (xv)),, -

It is worth noting that the induced representation is not the inverse operation of
the restricted representation. However, they are regarded as adjoint in the sens made
precise by the Frobenius reciprocity Theorem A.16.

In the general case, the relationship between the irreducible representations of
a finite group GG and those of its subgroups H is not established. Nevertheless, a
distinct circumstance emerges when H is a normal subgroup of G.

Proposition. Consider a finite group G and a normal subgroup H of G Let
(p, V) be a representation of the quotient group G/N. Define a representation
(0,V) of G as follows : for all g € G, let g denote the representative of g in G/N,
and define o(g) .= p(g). Then o is irreducible if and only if p is irreducible.

Proof. Let x be the character of o, then by definition of o,

(XX = ﬁ > " x(9) - x(9)

:ﬁz/ };{X(g.h).x(g.h)

=%2; %(9) - x(3)

:Wlm S 1) x(@),
geG/N

where the last equality is the Hermitian inner product of the character of p.

A.2 Matrix groups

A.2.1 Representations of connected compact matrix groups

The preceding Sections were specifically devoted to the study of the representation
theory of finite groups. Specifically, the concepts of complete reducibility of group
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representations and the interplay between irreducible representations and characters
were thoroughly examined. Moving forward, this section aims to extend the unders-
tanding of representation theory by examining the representations of infinite matrix
groups, which are closed subgroups of the group consisting of invertible matrices.

A representation of a matrix group G is a pair (p, V'), where V' is a complex vector
space with dimension d, and p : G — GL(V) is a group continuous homomorphism.
The continuity of p is equivalent to each of the component maps g — (p(g))l.j being
continuous, with ¢, 5 € {1,...,d}. If the component maps are rational functions of the
matrix components, then the representation (p, V') is referred to as being rational,
while if the component maps are polynomial functions of the matrix components,
then the representation (p, V') is referred to as being polynomial.

Theorem. The rational representations of a matriz group have component maps
polynomial in the matrix components and the inverse of the determinant.

When considering finite groups, the normalized summation |_c1;| > gec 18 frequently
used as a means of averaging over the group. This technique is especially pertinent
in the context of reducibility, in Section A.1.2 and character theory, in Section A.1.3.

Generalising this practice to infinite matrix groups is not possible. However, for
certain matrix groups, namely the compact matrix group, it is possible to perform
an integration over a normalized Haar measure as | o dg.

Consider a compact matrix group G, and let [.7((/') denote the Hilbert space of all
complex function on G, with finite 2-norm, for the Hermitian inner product defined
on any ¢,% € L*(G) by

($1) = /G o(9)9(g) dg.

In the case where G is a finite group equipped with the counting measure as
its Haar measure, an isomorphism between the Hilbert space L?(G) and the group
algebra C|@] is established via the map

F=Y flg)-g

geG

The collection of results presented herein, alongside their corollaries, are com-
monly referred to as the Peter-Weyl Theorem.

Theorem A.17 (Peter-Weyl). Let G be a compact matriz group, then the follo-
wing hold.

1. For any non-identity matrix g in G, there exists an irreducible represen-
tation of G which maps g to a non-identity matriz.
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2. The matriz components of inequivalent irreducible representations of G,
scaled by a factor of the square root of the dimension of the corresponding
wrreducible representation, constitute an orthonormal basis of the Hilbert
space L*(G).

3. The Hilbert space L*(G) is isomorphic to a Hilbert space direct sum of
irreducible representations of G, where the multiplicities correspond to the
dimensions of the corresponding irreducible representations.

Corollary. The compact matriz groups exhibit the properties of complete redu-
cibility and character orthogonality.

The third assertion of the Peter—Weyl’s Theorem A.17 constitutes the compact
matrix group analog of Proposition A.G.

Example. Let G, be the complex general linear group, consisting of in-
vertible matrices of degree 2, and which is locally compact but not compact,
resulting in a non-finite Haar measure. Let the representation (p, CZ) of GLy
defined on g € Gl as follows :

(1 log|detg|

As this representation admits only one-dimensional invariant subspace, namely
Spanc(1,0), the representation is not completely reducible. Indeed, if for all g €
GLs, there exists A, € C and (c¢1,¢2) € C? such that g - (c1,c2) = A, - (c1,¢2),
then it follows from

c1 + log (|detg|) = Ngc 01
Cy — )\g + Co,

that ¢; = 0.

A torus T of a compact matrix group G is defined as a compact and connected
abelian subgroup of G. A torus of G is said to be maximal if there is no other torus

of G that contains it as a proper subgroup.
Let S' denotes the unit I-sphere defined by S' == {e" |6 € [0,27)} on the
complex plane, and isomorphic to the unit circle on the real plane.

Theorem A.18. For all tori T', there exists some k € N such that T is isomor-
phic to a direct product of k copies of the unit 1-sphere S*.

In what follows, a given element ¢ in a torus 7" is implicitly expressed by means of
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the isomorphism in Theorem A.18, whereby ¢ is written as (21, ..., z;) with z; € !,
given k € N, the number of direct products of copies of C* via the isomorphism.

Example. Let SO,, be the special orthogonal group, which consists of the
special orthogonal matrices of even degree 2n. An instance of SOs,’s maximal
tori is the subgroup T consisting of the matrices of the following structure

cosf; sinf; --- 0 0
—sinf; cosf; --- 0 0
0 0 ... cosb, sinb,
0 0 +++ —sinf, cosb,

where 6; belongs to the interval [0, 27). In other words, T is the set of all block-
diagonal matrices with 2 x 2 rotation matrix blocks. Each block is isomorphic to
an element of S*.

Let the automorphism of a compact matrix group G, given by the map h —
gl-h-gforall h € G. This automorphism induces a transformation on the set
of maximal tori of G through conjugation. More specifically, it maps a torus 7T to
g!-T- g, which is itself a maximal torus of G.

Theorem A.19 (Eli Cartan). Let G be connected compact matriz group, then
the following hold.
1. FEach element of G is an element of some maximal torus of G.

2. All maximal tori of G are conjugate to each other in G.

Corollary. Let T' be a mazimal torus of a connected compact matriz group G,
then
G — U 971 . T . g

geG

Consider a connected compact matrix group GG and let T" be a maximal torus of
G. According to Eli Cartan’s Theorem A.19, for all ¢ € G and t € T there exists
h € G such that g =u' -t - u. Let (p,V) be a representation of G, then

which implies that p(g) and p(t) have the same spectrum.
Let N (7)) denote the normalizer of T. The Weyl group of G with respect to
T is defined as the quotient of Ng(T') by T, denoted by W (7)) := Ng(T')/T. The
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Weyl group acts on 7" through conjugation, where for any w € W(T') and t € T, the
action is given by w -t = w™! -t - w.
Proposition. Consider a connected and compact matrix group G and let T be
a mazimal torus of G. The Weyl group W(T') is a finite group. Furthermore,
two elements g, h € T are conjugate in G if and only if there exists an element
w € W(T) satisfying w - g = h.

Corollary. Let G be a connected compact matriz group and let T be a mazximal
torus of G. The space of continuous class functions on G s isomorphic to the
space of continuous complex functions on T which are invariant under the action
W(T). Specifically every continuous complex functions on T" which are invariant
under the action W (T'), extends uniquely to a continuous class functions on G.

Corollary (Weyl integration formula). Let T be a maximal torus of a connected
compact matriz group G, and let f be a continuous class function on G. Then
there exists a continuous real function h on T such that

/G f(g) dg = / F()h(E) dt.

Let G be a connected compact matrix group, with a maximal torus 7. The
Weyl group W(T) can be identified to the group of automorphisms of 7' that are
induced by inner automorphisms of G. Given any element g € G, it holds that
Ng (g’1 T g) = g1 Ng(T) - g. Consequently, the Weyl groups of G with respect to
distinct maximal tori of G are all isomorphic.

Example. Let U, be the unitary group of degree n. The group of diagonal
unitary matrices forms a maximal torus of U,,, denoted by T'. Any unitary matrix
can be decomposed into a diagonal form via conjugation by another unitary
matrix, so U, consists of diagonalizable matrices. The quotient of U, by the
conjugacy relation yields the conjugacy classes of diagonal matrices with diagonal
entries being roots of unity, which are the eigenvalues of the matrices. In other
words, each conjugacy class is represented by a diagonal matrix of the form

diag (6191, e ,ew"),

where 6; is a real number in the interval [0,27). The spectrum of a matrix is
preserved under conjugation, but representatives of these conjugacy classes are
unique only up to a permutation of the diagonal components. The permutation
group acting here is precisely the Weyl group W(T'). In the case of U,, this is
the entire symmetric group S,,. Hence, then quotient of the unitary group U, by
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the conjugacy relation is equal to the quotient of the maximal torus T' by the
Weyl group W(T).

Let G denote a compact and connected matrix group, and let T" be a maximal
torus of GG. Then, T is an abelian group. The irreducible representations of 7" are
one-dimensional. More specifically, they are continuous homomorphisms p : T" — C*,

that map each element z € (Sl)k of T, to a product of the form

p(z1, .oy 2k) = HZZ)\Z,
i=1
for some X\ in ZF, referred to as a weight. It follows that for each weight \ in Z*,
there exists an irreducible representation of 1" of this form.

Consider a representation (p, V') of a group G, and let (Res? (p), V) denote the res-
tricted representation of G on V with respect to the subgroup 7T'. By the Peter—Weyl’s
Theorem A.17, the restricted representation (Resg(p), V) can be decomposed into a
direct sum of one-dimensional irreducible representations of 7. This decomposition

takes the form of
V ~ @ V/\@"A,
\EZF

where each V), is referred to as the weight space corresponding to the weight .

Example. Let SU, be the special unitary group, which consists of the special
unitary matrices of degree 2. Consider a maximal torus of SU,, denoted by T,
which is a subgroup of SU, consisting of diagonal matrices of the form :

e 0
0 e—i@ )

where 6 € [0,27). Thus, T is isomorphic to S'. Let (p,V) be a representation
of SU, of dimension d, and consider the restricted representation (Res.%U2 (p), V)
and its decomposition into a direct sum of weight spaces :

In this basis, the action of the restricted representation Resy 2(p) to an element

of the torus T is given by
if ‘ ,
P (60 €0i9> = diag (6”‘19, ey e”\da),
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for some weights \; € Z.

Suppose G is a connected compact group of n X n matrices having a maximal
torus 7', and consider the decomposition of C™ into a direct sum of weight spaces,
for the representation of 1" that maps each element ¢t € T to itself :

n Dny
o= Prn
\EZK

The Weyl group W(T') acts on this decomposition by permuting the weights \.

Example. Let SU3 be the special unitary group of degree 3. An instance of SU3’s
maximal tori is the subgroup T consisting of the diagonal matrices,

et 0 0
0 e 0
0 0 e i0itb2)

?

where 0; and 6 belong to the interval [0,27). Therefore, T is isomorphic to S?,
via the map
et 0 0
0 e 0 — (e, ).
0 0 e i0i+62)

Using this isomorphism, the action of each (21,22) € S?, to the elements e1, ey
and es forming the standard basis of C3, is given by

(21,22) €1 = 2] - zg

(21,22) - €3 = z(f . 221

(21,22) €3 = 2" - 257,
This action yields the 3 weights (1,0),(0,1) and (=1, —1), and their correspon-
ding weight spaces. The Weyl group W (T'), being isomorphic to the symmetric

group Ss3, acts on these weight spaces by permuting the weights via the above
action.

Concluding the section, a summary of the various matrix groups of degree n that
have been used, and their properties is presented, assuming that the degree n is
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larger than 1 :

Matrix group Topology
Complex general linear group not compact
GL, = {g € M,(C) } detg # 0} connected / not simply connected
Complex special linear group not compact
SL,, :== {g € M,(C) ‘ det g = 1} simply connected
Unitary group compact
U, = { g € M,(C) ‘ gg* =1 } connected / not simply connected
Special unitary group compact
SU,, = {g € M,(C) } gg* =1 and detg = 1} simply connected
Orthogonal group compact
O, ={g € M,(R) | gg" =1} not connected
Special orthogonal group compact
SO, = {g € M,(R) | 99" =1 and detg =1} | connected / not simply connected

With the inclusions O,, € U,, € GL,, and SO,, € SU,, C SL,,.

A.2.2 Representations of Uy

The unitary group of degree d, denoted U,, is the group of d x d unitary
matrices, i.e., matrices U with complex entries such that UU* = U*U = I, where U*
denotes the conjugate transpose of U.

An equivalent definition of the unitary group is as the matrix group that preserves
the standard Hermitian inner product <-, > defined on the complex vector space C?.
That is, for all vectors z,y € C? and for all U € Uy, it holds that

<Ux, Uy> = <x,y>.

Let T be the group of diagonal unitary matrices, a maximal torus of the unitary
group Uy. Let (p,V) be a representation of Uy, and (Resgd(p),V) the restricted
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representation of Uy on V' with respect to the subgroup 7', such that

V ~ @ Vi,

AezZd

is the decomposition of V' into a direct sum of one-dimensional irreducible represen-
tations of 7', with some weights A € Z¢. The maximal element in the set of these
weights, with respect to the lexicographic order, is denoted the highest weight.

Example. Let U, be the unitary group of degree d, and let T' be the group of
diagonal unitary matrices, an instance of U,;’s maximal tori. Let (,0, (Cd) be the
representation of Uy that maps each element U € Uy to itself, i.e. p(U) = U
for all U € Ug. Introduce the element diag(e™, ... e"%) of T, and let ey, ..., eq
constitute the standard basis of the vector space C?. The relationship between
these elements is given by the equation :
diag (ewl, . ,ewd) ce; = e e,

The decomposition of C¢ into a direct sum of one-dimensional irreducible repre-
sentations of 1" can be expressed as

where the index i denotes the weight A\ € Z?, such that A; = 1 and \; = 0 for
every j # i. Consequently, the highest weight is (1,0, ...,0).

The unitary group U, has a trivial irreducible representation of dimension 1,
which assigns the scalar value 1 to every unitary matrix U € Uy. Additionally, there
exists a d-dimensional irreducible representation of U,, wherein each unitary matrix
U € U, is mapped to itself. However, no irreducible representation of intermediate
dimension, i.e., between 1 and n, can be found. In order to discover new irreducible
representations, it is necessary to increase the dimension. One possible approach to
achieving this is to consider a complex tensor product space.

Theorem A.20. For each weight A € Z% such that \y > --- > Ay, there exists a
unique irreducible representation Vy of the unitary group Uy, with highest weight
A. These are all inequivalent and they are all the irreducible representations of

Ug.

Consider the complex tensor product space (Cd) “" Define a representation of
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the unitary group U, on this space by
U U™,

Additionally, define a representation of the symmetric group &,, on the this space by
permuting the tensor positions, and extend this action linearly to the group algebra

C[6,].

Example. Consider the complex tensor product space (Cd) 3 Let V1, Vg, v3 € C?
be arbitrary vectors, and o € &,, be arbitrary permutation, then

g - (1)1 X vy ® U3) = Ug-1(1) X Ug-1(2) X Vo-1(3)-

Define T" as the canonical Young tableau corresponding to the partition (3) of 3.
The action of the Young symmetrizer sy on the complex tensor product space
(Cd) 3 gives rise to a new complex tensor product space, st - ((Cd) ®3, which is

referred to as the symmetric subspace of ((Cd)®3, and denoted by \V*C“. For
instance,

st (v @ Uy @u3) = ZU'(U1®U2®U3)

ceG3
= (Ul®1}2®1}3) + (U2®U1®U3) + (U3®U2®U1)+
(V1 ® V3@ v3) + (V3 @ V1 @ V3) + (Vg ® V3 R V7).

The symmetric group &3 acts trivially on V3C?, i.e. for all ¢ € &5 and x € V3C?,
then o-x = z. Let T" be the canonical Young tableau associated with the partition
(1,1,1) of 3. The complex tensor product space st - ((Cd) ®3, is referred to as the

antisymmetric subspace of (Cd)®3, and denoted by A*C?. For instance,

st (v @ Uy ®@u3) = ZU'(U1®U2®U3)

ceBG3
= (11 @V ®u3) — (V2 ® V1 ®V3) — (V3 ® Vp ® V1) —
(Ul ®U3 ®U2) -+ (Ug X v X UQ) —+ (Uz ®U3 ®Ul).

The symmetric group &3 acts on A*C? through multiplication by the signature,
i.e. for all 0 € &3 and z € A3CY, then o - z = sign(o) - .

Let Uy be the unitary group of degree d. Given a partition A - n consisting of
[ parts, it is possible to associate A with a weight in Z9, provided that [ < d, by
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appending d — [ zeros to the right of the partition.

Theorem. Consider A\ n a partition of n with | parts. Let T' a Young tableau
without repetitions on X. Then, the complex tensor product space Sp- ((Cd) O s the
zero space, if | > d, and an irreducible representation of Uy, for the representation
U — U®"™, with highest weight X, if | < d.

Corollary. All irreducible representations of the unitary group U,, highest
weights A € N¢, is equivalent to sy - (Cd)®n, with T a Young tableau without
repetitions on .

From Theorem A.20, for a given partition A F n with at most d part, the ir-
reducible representations sp - ((Cd)®n of the of the unitary group Uy, are mutually
equivalent across all Young tableaux without repetition 7" on A, thereby solely de-
pendent on A, and consequently, it is possible to designate any representation of this
type as /.

Theorem. Consider a partition A = n with at most d parts. Let V¥ be the
corresponding irreducible representation of the unitary group Uy. The dimension
of V& is equivalent to the cardinality of the set of semistandard Young tableaux
associated with \, with entries in {1,..., d}

Since the entries in each columns of a semistandard Young tableau are strictly
increasing, there is no semistandard Young tableau with entries in {1,...,d}, and
with more than d rows.

Example. Let Uy be the unitary group of degree 2. Consider A\ the partition
(1,1,1) of 3, then the antisymmetric subspace Vi3 ~ A3C? is the zero space.
Let A be the partition (2,1) of 3, then the irreducible representation V of U,
has dimension 2, since the semistandard Young tableaux associated with A, with
entries in {1,2} are

and

For all £ € Z there is a 1-dimensional irreducible representation of Uy defined
by U + (det U)*, and denoted det” This irreducible representation is rational for all
k € 7Z and polynomial for k € N.

Theorem. All irreducible representations of Uy with highest weight X\ € Z¢ are
equivalent to the representation

k1sd
det™ -V,
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where = n is a partition of n with at most d parts, and k € N is an integer
such that \; = p; — k.

The set of unitary matrices Uy is dense, with respect to the Zariski topology,
within the set of complex invertible matrices GLg.

Theorem. The irreducible rational representations of GLg are the same as the
wrreducible representations of Uy.
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Cette annexe est dédiée a un résumé détaillé de la these, en frangais, conformé-
ment au code francgais de ’éducation article L121-3.

B.1 Introduction

La théorie de I'information quantique est un domaine interdisciplinaire qui com-
bine les principes de la mécanique quantique et de la théorie de 'information, reliant
ainsi la physique théorique, l'informatique et les mathématiques. L’objectif princi-
pal de ce domaine de recherche est de comprendre les propriétés quantiques des
systémes physiques, afin de pouvoir les manipuler et les transmettre de maniére
efficace. En tant que domaine de recherche en évolution rapide, la théorie de I'infor-
mation quantique a le potentiel de catalyser des avancées significatives en matiére
de cryptographie, de calcul et de communication.

Un concept fondamental de la théorie de I'information quantique est I'intrication
quantique, qui fait référence aux corrélations qui existent entre deux ou plusieurs sys-
témes quantiques. Ces corrélations non-classiques permettent de réaliser des taches
qui sont impossibles dans les systémes classiques. L’intrication quantique est deve-
nue une ressource clé pour le traitement de I'information quantique, permettant des
opérations telles que la téléportation quantique, le codage superdense et la correction
d’erreurs quantiques.

Les canaux quantiques, un autre concept clé de la théorie de I'information quan-
tique, décrivent la transmission d’informations quantiques. Le développement de
techniques efficaces et fiables pour la transmission d’informations quantiques est
essentiel pour la réalisation de la communication quantique et de l'informatique
quantique. Les canaux de clonage quantiques, une catégorie spécifique de canaux
quantiques, font référence a la notion de clonage quantique, qui implique la création
de plusieurs copies identiques d'un état quantique inconnu. Bien que le clonage quan-
tique parfait soit impossible, pour un état quantique inconnu, en raison du théoréme
de non-clonage, résultant de la linéarité de la mécanique quantique, la création de
copies approximatives reste réalisable.

En outre, il est important de souligner que la théorie de 'information quantique
étend la théorie de 'information classique en incluant les propriétés uniques de méca-
nique quantique. En effet, les systémes quantiques peuvent étre utilisés pour stocker
et manipuler de 'information classique.

Cette thése vise a fournir une investigation exhaustive des problémes de clonage
quantique, ainsi que des problémes d’intrication quantique associés. L’analyse de
ces sujets est basée sur 'application des concepts de base de la théorie de la re-
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présentation, en particulier ceux associés au groupe symétrique. L’utilisation de ces
concepts permet 'unification de différents sujets et une compréhension plus étendue
des questions traitées.

Pour atteindre cet objectif, I’exploration initiale de cette thése implique la notion
fondamentale de dualité Schur-Weyl, qui fournit un lien critique entre le groupe
symétrique et le groupe unitaire. Cette dualité permet une représentation et une
manipulation efficaces des systémes quantiques, en faisant ainsi un outil précieux pour
la recherche en théorie de I'information quantique. De plus, différentes extensions de
la dualité Schur-Weyl, impliquant d’autres groupes et algébres, sont étudiées dans
cette these.

Une application principale de la dualité Schur-Weyl qui recoit une attention par-
ticuliére est le clonage quantique, qui implique la création de plusieurs copies d’un
état quantique inconnu. Le cas 1 — 2 et le cas plus général 1 — N, ou N copies
d’un état inconnu sont créées, sont étudiés dans cette thése, fournissant de nouvelles
perspectives sur les contraintes imposées par le théoréme de non-clonage.

L’investigation de cette thése se poursuit ensuite avec un probléme d’intrication
quantique plus général, en explorant sa relation avec la dualité Schur-Weyl et en
développant de nouvelles techniques pour analyser et résoudre le probléme.

La contribution principale de cette thése est ’application de la théorie de la repré-
sentation a des problémes clés de la théorie de I'information quantique, en particulier
ceux liés aux limites du clonage quantique et a l'intrication quantique.

B.2 Théorie de I'information quantique

Soit H := C¢ un espace de Hilbert complexe fini de dimension d, et M ; 1'espace
des matrices complexes d x d agissant sur . Etant donné une matrice M € M, sa
transposée conjuguée M est notée /*. Le produit intérieur de Frobenius < > sur
M est défini par,

(A,B) :=Tr [A*B].

En utilisant la notation de Dirac, les vecteurs sont représentés par des kets, notés
’z r>, tandis que leurs duaux sont appelés bras, notés <z} Le produit intérieur sur H
devient simplement,

(v|o) € C,
et le produit extérieur,
WX € My.
La base de calcul de H est définie par : }0> e |d — 1>.
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Sur un produit tensoriel H; ®- - - ® H,, les notations //;) et v(;) pour une matrice
M € Mg, et un vecteur v € H; sont utilisées pour désigner la position de la matrice et
du vecteur sur I'espace tensoriel H;. Etant donné une matrice M € Mg, ®---@ My,
la transposée partielle )/" désigne I'opération de transposition sur premier tenseur
H1, et la trace partielle Tr;[)/] désigne 'opération de trace sur le tenseur H;.

De plus, la notation [n] est utilisée pour désigner alternativement ’ensemble
{1,...,n} oul'ensemble {0,1,...,n}. Les deux utilisations sont non ambigués dans
leur contexte.

L’ensemble des états quantiques sur le systéme quantique H est défini par
I’ensemble convexe :

Dd::{pe./\/ld‘TrpzlandeO}.

Un point extrémal de Dy est appelé un état quantique pur, et est un projecteur de
rang 1 sur un vecteur }1/1> € H. Un état quantique mixte est donc une combinaison
convexe d’états quantiques purs. L’état quantique le plus central de Dy est appelé
I’état maximalement mixte, et est [ := %‘i.

Un systéme quantique composé est un produit tensoriel de systémes quan-
tiques H1® - - - ® H,,. Dans un systéme quantique composé biparti H4 ® Hpg, un état

quantique pur est un projecteur de rang 1 vers un vecteur W)> ) € Ha®Hpg. Sice

se décompose en

W>(AB) - |¢>A ® |¢>B’

avec |w> 46t |¢> » les états quantiques réduits sur H4 et Hp respectivement, alors
I’état quantique pur est dit séparable. Sinon ’état quantique pur est dit intriqué.
Un état quantique pur le plus intriqué sur H ® H est appelé état maximalement
intriqué, et est le projecteur de rang 1 w = ‘QXQ‘ Sur la base de calcul de H, le
vecteur ‘Q> s’écrit

vecteur |¢><AB)

= )
|Q> = ﬁ; ‘zz>.

Un état quantique p, combinaision convexe de 1’état maximalement intriqué et
de I’état maximalement mixte, est appelé état isotropique :

p=X-w+(1— NI, Aeo,1].

La transformation la plus générale d'un état quantique, pur ou mixte, est appelée
un canal quantique, et est définie comme une application linéaire complétement
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positive et préservant la trace, i.e. un canal quantique est une application linéaire
d: My — My telle que Tr [<I>(X)] =Tr [X] pour tous X € My, et si X > 0 alors
(<I> ®idD)(X) > 0 pour tous D € N.

A toute application linéaire ® : M, — My est associé une matrice C'y € Myya
appelée matrice de Choi, et définie par

Cp = (idg ®P) (i_:l i) )

= (idy ®®)(d - w).

Depuis la matrice de Choi Cg, il est possible de retrouver 'application linéaire ®

grace a la formule :
O(X) = Trq [Co(XT @ Iy)].

En particulier, 'application linéaire ® est complétement positive si et seulement si
Cs > 0, et préserve la trace si et seulement si Try [C’@} =1,
La fidélité quantique est une mesure de proximité entre deux états quantiques
p pur, et o quelconque. Elle est définie comme la fonction symétrique /' de Dy x Dy
vers [0, 1] par,
F(p,o) = Tr [po],

avec la propriété : Fi(p,0) =1< p=o0.

B.3 Probléme de clonage quantique

Le probléme connu sous le nom de probléme de clonage quantique vise a
identifier un canal quantique ® spécifique, appelé canal de clonage guantique,
qui transforme un état quantique pur d’entrée sur un systéme quantique H, vers un
état quantique mixte de sortie sur un systéme quantique composé H®Y ; de sorte
que les marginales de sortie de ® soient aussi proches que possible de I'état d’entrée.
Pour cela, un vecteur de direction noté « satisfaisant a € [0, 1] et SV i = 1a; =
1 est introduit. Le probléme de clonage quantique est défini comme le probléme
d’optimisation donné par,

q%’j%gﬁ}eizla p pur ( (P) p)

ol la moyenne est prise par rapport a la mesure uniforme sur les états quantiques
purs.

151



Il n’existe pas de canal quantique ¢ : My — (/\/ld)®N tel que pour toutes mar-
ginales ®; et pour tous états purs p

ie. ®;(p) = p. Cette impossibilité découle du caractére linéaire des canaux quan-
tiques, en effet en fixant une base ‘Z><j‘ de My, il est possible de définir le canal

quantique ® par :
N N\ - |®2
S([ixd]) = [}

Le canal quantique ® copie parfaitement les états quantiques purs, projecteurs de
rang 1 sur les élements de la base ‘Z>< j|, en deux copies. Mais tous les autres états
quantiques purs ne seront pas correctement copiés, e.g. soit I’état quantique pur

p = ‘w><1b| avec W> = \%(M + |j>) oui,j€{0,...,d— 1}, alors

(o) = 5 (2(]ixl) + #(JiXa) + 2(lixil) + 2(|3i1)
# |oXe]™.

Ce résultat est connu sous le nom du théoréme de non clonage. Le probléme de
clonage quantique consiste alors a trouver un canal quantique qui soit le meilleur
pour copier les états quantique pur selon une certaine direction.

Pour tous canaux de clonage quantiques ®, en posant pour chaque marginal ®;,

fi= E F(¢i(ﬂ)7ﬂ),

p pur

il est possible de trouver un canal quantique ¥ tel que pour tous états quantiques
purs p, et toutes marginales V,,

L4
Wi(p) =pi-p+(1 —pz')g7
ou p; € [0, 1], et tel que p; et f; soient reliés par :
_ (1 —pi) o dfi =1
fi=pit—F pi= 1

Ainsi le probléme de clonage quantique peut étre caractérisé par ’ensemble :

RA\',rl = {p S [07 1]N

cana I
3P : My —22, (Md)®N t.q. ®i(p) =pi-p+ (1 _pi)_d} :

quantique d
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La premiére partie de cette thése concerne article [NPR21] sur le probléme
de clonage quantique 1 — 2. L’ensemble Ry 4 est I'union d’ellipses indexée par
A€ 0,d] :

2 2
T —c

ay by

Ad—2

ol ay = \/d+7_1, by = ﬁ et ¢y == 95— . Les parameétres x et y peuvent étre exprimés
comme,

T =Dp1— P2 Y =Dp1+ D2

Les canaux de clonage quantique optimaux ® pour le probléme de clonage quan-
tique correspondent & \ = d, et leurs matrices de Choi s’écrivent comme une combi-
naison linéaire complexe de 4 matrices A, B,C et D :

Co=a-A+b-B+c-C+d-D,
tel que a,b € R et,
c=d d(a+b)+2R(c) =1 ab > |c|?.

En général, un canal de clonage quantique ®, pas nécessairement optimale, a une
matrice de Choi qui s’écrit comme une combinaison linéaire complexe de 6 matrices

A B,C,D,E et F :
Co=a-A+b-B+c-C+d-D+e-E+ f-F.

Ces 6 matrices correspondent & des opérateurs de permutation des tenseurs de H®3,
transposée partiellement sur le premier tenseur. Ainsi,
AT est la transposition du premier et deuxiéme tenseur,
B" est la transposition du premier et troisiéme tenseur,
C" est le cycle décroissant des trois tenseurs,
D' est le cycle croissant des trois tenseurs,
E" est I'identité,
e F' est la transposition du deuxiéme et troisiéme tenseur.

La deuxiéme partie de cette thése concerne I'article [NPR22| sur le probléme de

clonage quantique 1 — N. Le probléme de clonage quantique peut étre simplifié en
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utilisant,

ENj E [F(®:(p).0)]

p pur

:iai' E -TI" (‘E(P))PH

p pur

=Soae 5, | T [@0) (0 0 1)

p pur

N T
=2 i E |Tr C@(P&@P(i)@ffw_l))”

p pur

N
= Zai -Tr {C’@(plgur [pg)) & p(i)} ® [(‘?(N—l)ﬂ

N
= —1 2 ®(N—-1)
T dd+1) ;WT‘" [Qb((d T +d - wos) ® I )

N
: Co ( Yo (@ T +d-wip) @ 15N )] |
=1

=—F-1Tr
(. J/

d(d+ 1)
.

Ce qui donne la borne supérieur sur le probléme de clonage quantique dans la direc-

tion a :
N

sup E a; - E [F(@i(p), p
P c%.laal i—1 p pur
quantique

)\max(Ra)
=T

Ol A\pax(R,) est la plus grande valeur propre de R,.
Cette borne est atteinte pour toutes direction a par le canal de clonage quantique
®¢  défini par,

opt

Vopu(p) 1= Palp@ 1Y) P Vp pur,

ou P, est donné comme une combinaison linéaire positive des opérateurs de permu-
tation des tenseurs de H®V.
L’ensemble Ry 4 est la partie positive de la boule unité dual d’une norme
définie sur x € R par,
AAmax(S2) — |||y
d? —1 ’

]l =
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o 5, 1= T, ol - (d - wian) @ 17

B.4 Probléme d’intrication quantique multiparti

Le probléme de clonage quantique consiste a trouver un canal quantique ® tel
que pour tous états quantiques purs p, et toutes marginales ®;,
Iq
Vilp) = pi-p+ (1 =pi),
avec des p; aussi grand que possible. La matrice de Choi des marginales de ® est
alors proportionnelle & un état isotropique, i.e.

Cy, = d(pi-w+ (1 —p)I).

Sous forme de matrice de Choi, le probléme de clonage quantique consiste a trouver,
a normalisation prés, un état quantique p € H®N+Y le plus maximalement intriqué,
entre un tenseur (I’entrée), et tous les autres (la sortie). Si tous les p; sont égaux, le
probléme de clonage quantique 1 — N devient un probléme d’optimisation semi-
définie positive :

max p

pp

s.t. poﬂ-:d(p'w—k(l—p)l), Vie{l,...,N}
Cﬂb 207

ou po,; designe I'état quantique réduit Triny (0.} [,0}

La troiséme partie de cette thése concerne larticle [Chr-+23]| sur variante de ce
probléme qui consiste consiste & trouver un état quantique p € HV le plus maximale-
ment intriqué entre chaque paire de tenseur. Ce probléme d’optimisation semi-définie
positive s’écrit :

p(N,d) =max p
PP

s.t. pivj:d(p~w+(1—p)1), Vi£je{l,...,N}
C‘i) Z 07
La solution de ce probléme dépend a la fois de N et de d, ainsi que de la parité de
N et de d, et s’éxprime par ’équation,

1

— N+N mod 2—1
p(N,d) = min { 241 1
2dN+1° N—1

si d > N ou soit d soit N est pair
si N > d et a la fois d et N sont impair.
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Les premiéres valeurs de p(N,d) sont résumées dans le tableau suivant (en [ les
valeurs de p(IV, d) pour lesquelles les états isotropiques p; ; sont séparables) :

&N 2 3 4 5 6 7 8 9
2 1 1/3 1/3 /s 1/s /7 /7 /g
3 1 The Y3z T; s Thz 1z /8
4 1 1/3 s 15 1/s O ¢ 1/g
5 1 1/3 3 s 15 1/; 1/ 1ljg;
6 1 1/3 1/3 /s 1/5 /7 /7 /9
7 1 1/3 1/3 /s /s 5/33  1/7 15/197
8 1 1/3 /3 s 1/s 17 /7 /g
9 1 1/3 s 15 1/s V7 Y7 19/163
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