
Operator - valuedfreeprobability
and tensorflattenings

a numerical experiment

In[433]:=

ClearAll["Global`*"]

In[434]:=

d = 3000;
diagP = DiagonalMatrix[1.0 * Table[RandomInteger[{0, 1}], d]];
Histogram[Eigenvalues[diagP], {0.11}, "Probability",
PlotLabel  "Eigenvalues of a random diagonal projection"]
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In[437]:=

UP = RandomVariate[CircularUnitaryMatrixDistribution[d]];
matP = UP.diagP.ConjugateTranspose[UP];
Histogram[Eigenvalues[matP] // Chop, {0.11},
"Probability", PlotLabel  "Eigenvalues of a random projection"]
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Sum of two random diagonal projectors
In[440]:=

diagQ = DiagonalMatrix[1.0 * Table[RandomInteger[{0, 1}], d]];
sumClassical = diagP + diagQ;
Histogram[Eigenvalues[sumClassical] // Chop, {0.11},
"Probability", PlotLabel  "Sum of two random diagonal projections"]
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Sum of two random projectors
In[443]:=

UQ = RandomVariate[CircularUnitaryMatrixDistribution[d]];
matQ = UQ.diagQ.ConjugateTranspose[UQ];
sumFree = matP + matQ;
Show[Histogram[Eigenvalues[sumFree] // Chop, 20,

"PDF", PlotLabel  "Sum of two random diagonal projections",
PlotRange  {{-0.1, 2.1}, Automatic}], Plot[1 / (Pi Sqrt[x (2 - x)]),
{x, 0, 2}, PlotStyle  {Thick}, PlotRange  {Automatic, {-0.1, 1.3}}]]
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Above, the curve in blue is the probability density function of the arcsine distribution given by
1

π x(2 - x)
1(0,2) (x)d x

Voiculescu’s free probability theory
Theorem. Independent, unitarily invariant randommatrices are asymptotically free.

In the examples above, the (diagonal or not) random projections have limiting distribution

μ =
1

2
δ0 +

1

2
δ1

When summing the diagonal projections, we obtain the classical additive convolution
1

2
δ0 +

1

2
δ1 *

1
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δ0 +
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2
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1
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1
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When summing the randomly rotated projections, we obtain the free additive convolution
1

2
δ0 +

1

2
δ1 

1

2
δ0 +

1

2
δ1 =

1

π x (2 - x)
1(0,2) (x) dx

Seoul-lectures-intro.nb 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Unitary invariance hypothesis
We shall now consider the following two blockmatrices


P 0
0 P

 and
0 Q
Q 0

Clearly, they are independent, but not unitarily invariant (although P and Q are). The first one

converges, as d∞, to
1

2
δ0 +

1

2
δ1while the second one converges to

1

4
δ-1 +

1

2
δ0 +

1

4
δ1 . We

consider their their sum

X =
P Q
Q P

In[447]:=

blockP = ConstantArray[0, {2 d, 2 d}];
blockP〚1 ;; d, 1 ;; d〛 = matP;
blockP〚d + 1 ;; 2 d, d + 1 ;; 2 d〛 = matP;
blockQ = ConstantArray[0, {2 d, 2 d}];
blockQ〚d + 1 ;; 2 d, 1 ;; d〛 = matQ;
blockQ〚1 ;; d, d + 1 ;; 2 d〛 = matQ;
X = blockP + blockQ;
Histogram[Eigenvalues[X] // Chop, 20, "PDF",
PlotLabel  "Sum of two random, not unitarily invariant, block matrices"]
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Note, however, that if we rotate the second matrix by a random unitary matrix of full size (2 d)

Y = 
P 0
0 P

 + U
0 Q
Q 0

U*

we obtain a different eigenvalue density
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In[455]:=

largeU = RandomVariate[CircularUnitaryMatrixDistribution[2 d]];
blockQUI = largeU.blockQ.ConjugateTranspose[largeU];
Y = blockP + blockQUI;
Histogram[Eigenvalues[Y] // Chop, 20, "PDF",
PlotLabel  "Sum of two random, unitarily invariant, block matrices"]
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Above, the summands satisfy the assumptions of Voiculescu’s theorem, to the limiting probability
distribution is a free additive convolution:

μ 
1

2
δ0 +

1

2
δ1 ⊕

1

4
δ-1 +

1

2
δ0 +

1

4
δ1

The last two plots are visually different, the limiting distributions are not identical. This can also be
seen by looking at the following mixed moments which differ in the two situations

In[459]:=

1 / (2 d) Tr[blockP.blockQ.blockP.blockQ] // N // Chop
1 / (2 d) Tr[blockP.blockQUI.blockP.blockQUI] // N // Chop

Out[459]=

0.190509

Out[460]=

0.127802

In the first situation, the randommatrices are not unitarily invariant, and one cannot apply Voicules-
cu’s theorem. As it turns out, they are not asymptotically free, but only operator-valued asymptoti-
cally free. This is the topic of the first lecture, introducing the basics of operator-valued free
probability and the applications to block randommatrices.

Independence hypothesis
Recall that PU diag (p1,…, pd)U* is a random, unitarily invariant, projection of rank d /2. The

matrices P and PT are clearly not independent, since they have the same entries, up to permuta-
tion. However, Mingo and Popa have shown the following result.

Theorem. A unitarily invariant randommatrix is asymptotically free from its transpose.
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In[461]:=

sumTranspose = matP + Transpose[matP];
Show[Histogram[Eigenvalues[sumTranspose] // Chop, 20, "PDF",

PlotLabel  "Sum of a random projection and its transpose",
PlotRange  {{-0.1, 2.1}, Automatic}], Plot[1 / (Pi Sqrt[x (2 - x)]),
{x, 0, 2}, PlotStyle  {Thick}, PlotRange  {Automatic, {-0.1, 1.3}}]]
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So asymptotic freeness can hold even in the absence of the independence condition. We shall
explore this phenomenon during the second lecture, when we shall generalize Mingo and Popa’s
result to flattenings of random tensors.
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LECTURE I Introduction to operator valued

free probability

Definition A scalar non commutative probability space
is a pair et 9 where A is a algebra
and Q A E is a unital linear form

An operator valued ne prob space is a triple
A B E where le BEA are unital

algebras and E A B is a linear

map called conditional expectation
E n n

E bab be a b tacet bb'EB

Definition Subalgebras BE An Ak Ed are

called B free if
E at ai air 0

whenever ai E Ajei with j 4 just jcr
for centered at a Eca s

Example let a 4 y et to be a usual

e n probability space Consider 3 different

operator valued no probspaces for
MnCat a Mn A ox at



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E C is je en I Glaii In Edina

Ey Malet In diagonal

Ez ay Sj GlaijlijÉÉ
Ez Mm at Dm

Ez ai 9 ai
een

E3 id Qq Mala Mn Q

Theorem if An Aa Ect are free then

Mna An Mm d a Aa are Mn a free
in Malet Mala E3

but in general not Dm free nor d free

How to use Cop ud freeness

x y free then

9 ay p Et a n j ply nl

G i 5 t y se ply etc peg t slyly

Y Yfreeness

If x y EA are e free then



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Qbeyny 2 ply 6 lately e ply
different than classical probability

if x y EA are B free then

E x yay E x y a Ely t

Ela E y Elas y
Eir Ely Else Ely

remember that E is B valued so Ebel Ely
do not commute in general

Back to the example in the numerical experiment

Recall that Pa Qd are indep unitarily invariant

projections of rank 42 So

Pd Qd pig pig free proj
q p Q q I

Consider now

I Ed q 9 edge

and Rd U Qd U for Ue U 2d
Haar distributed
independent of Pa Qd

If we denote by Mx InE Sd x the empirical



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eigenvalue distributionof a matrix X then we have

ME IT 180 128 Yugo 3141
t tot's

note that Ed Pa 89 and Ed p 01 3
so spec Ed spec Pd and spec Ed I spec Qd

Fact 1 By Voiculescu's theorem Rd and Rd are asympt
free so

Ed Etr FaRdFaRd 6 pr pr where p r

are free elements with resp distributions

p n 180 1 S and rn tf it So IS
By the previous result

q pr pr q p2 plate p y r yip girl

t It I

Ig

Fact 2 By the operator valued freeness result Id and Ed
are asymptotically Ma Q free

Ed Mid Lo Pl M e

E B to f tetra at Etr B

at Etr c f E Trd



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ea Fa o 1891

Ed Qd I 19

By the computation for op valued freeness

E TdTdTdQd 8 E p g pg for
M Q free elements p g

so E pg pg Elp E q p EG
EE EE

1 1 911

Eif
Compute E p 19 p Em Ed Eff

II Ea Ya 19

El Papa J j 11,1 f 1 111 1 3
y pgpg I tr E pgpg
This matches the nu me rial experiment
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LECTURE I Flatterings of random tensors

scalars N param
x o vectors ocean Nparam Gi
A o matrices Ae Mule N'param aijlj.ee
t 3 tensor TE EN ENOAN N param

Tijk ii KEEN
2k tensor Me a 02k

M in size in ish EIN

m
ked

m
k 2

M

ink

Flattening transforming a tensor into a matrix
hard tostudy easy
no eigenvalues

canonicalform

multi linearalgebra linear algebra
6 1

M has two flattenings Maya Mcr Edna

Man MU
and Mary MM

joint work with Camille Male and Stéphane Dartois, arXiv:2307.11439



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using coordinates Maez i j Mi.j
Mcr i j Mj i

My Mince

General case Me n 2k

a

permutation
re Sa

M 0 M

tensor

b E
its r flattening

i r mMr
y
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em
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tensor 0 its flattening

random M dependent randommat



2. Model of random tensors and main result 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example in the tensor case c n c o
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The main theorem 
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3. Convergence in distribution and circular families 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 

Operator-valued free cumulants 
 
 
 



 
 

Circular families 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Main intuition if Xi Xie M a

are iid Ginibre random matrices then
iid Nelon
entries

xii exit
distr

can er
N in

freeh

alent element

A standard circulant element
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Scalar-free sub-families (generalizing the Mingo-Popa transpose freeness result) 
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