Classical vs Quantum Information Theory

\#lectures

Sets vs Hilbert spaces

Classical Quantum

Finite alphabet Finite dimensional, complex Hilbert space

$$
\Sigma_{A}=\{1,2, \ldots, d\} \quad \mathcal{H}_{A} \cong \mathbb{C}^{d}=\operatorname{span}(|1\rangle,|2\rangle, \ldots,|d\rangle)
$$

Different letters $i \neq j$ Orthogonal vectors $x \perp y$

States

Classical Quantum

Probability distributions Density matrices $\rho \in \mathrm{D}\left(\mathcal{H}_{A}\right)$

$$
p \in \mathrm{P}\left(\Sigma_{A}\right)
$$

$p \in \mathbb{R}^{d}$ such that $p_{i} \geq 0$ and $\rho \in \mathcal{B}\left(\mathcal{H}_{A}\right) \cong \mathcal{M}_{d}(\mathbb{C})$ such that ρ is positive semidefinite $\rho \geq 0$ and unit
$\sum_{i} p_{i}=1$ trace $\operatorname{Tr} \rho=1$
Classical states can be embedded as diagonal matrices
Extremal points: Dirac masses Extremal points: pure states

$$
\operatorname{ext} \mathrm{P}\left(\Sigma_{A}\right)=\left\{\delta_{i}: i \in \Sigma_{A}\right\}
$$

$$
\operatorname{ext} \mathrm{D}\left(\mathcal{H}_{A}\right)=\left\{|x\rangle\langle x|: x \in \mathcal{H}_{A},\|x\|=1\right\}
$$

(real) dimension: $d-1 \quad$ (real) dimension: $d^{2}-1$
In dimension $d=2$: bits In dimension $d=2$: qubits
A segment $[0,1]$ The Bloch ball $(1-p) \delta_{0}+p \delta_{1}$

$$
\rho=\frac{1}{2}\left(I_{2}+x \sigma_{X}+y \sigma_{Y}+z \sigma_{Z}\right) \quad \text { with } \quad\|(x, y, z)\| \leq 1
$$

Pure states have $\|(x, y, z)\|=1$
The uniform distribution
The maximally mixed state

$$
p=\left(\frac{1}{d}, \frac{1}{d}, \ldots, \frac{1}{d}\right)
$$

$$
\rho=\frac{I_{d}}{d}=\sum_{i=1}^{d}|i\rangle\langle i|
$$

Bipartite and multipartite systems

Classical Quantum
Joint system: cartesian product Joint system: tensor product

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 m} B \\
a_{21} B & a_{22} B & \cdots & a_{2 m} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m m} B
\end{array}\right]
$$

$$
\begin{aligned}
\Sigma_{A B} & =\Sigma_{A} \times \Sigma_{B} \\
& =\left\{(x, y): x \in \Sigma_{A} \text { and } y \in \Sigma_{B}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{H}_{A B} & =\mathcal{H}_{A} \otimes \mathcal{H}_{B} \\
& =\operatorname{span}\{|x\rangle \otimes|y\rangle\}
\end{aligned}
$$

where x and y index bases of \mathcal{H}_{A} and \mathcal{H}_{B}
Bivariate probability distributions

$$
p_{A B}(x, y) \geq 0, \quad \sum_{x, y} p_{A B}(x, y)=1
$$

Bipartite density matrices

$$
\rho_{A B} \geq 0, \quad \operatorname{Tr} \rho_{A B}=1
$$

Product measures

$$
p_{A B}=p_{A} \times p_{B}
$$

Every state is a convex combination of product states

$$
p_{A B}=\sum_{x, y} p_{A B}(x, y) \cdot \delta_{x} \times \delta_{y}
$$

There exist entangled states $=$ states that are not convex combinations of product states

separable states

$$
\rho_{A B}=\sum_{i} t_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \in \operatorname{SEP}(A, B)
$$

Pure state example

$$
\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)=|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Mixed state example

$$
\rho=\frac{I_{A}}{\operatorname{dim} \mathcal{H}_{A}} \otimes \frac{I_{B}}{\operatorname{dim} \mathcal{H}_{B}}
$$

The maximally entangled state: $\mathcal{H}_{A}=\mathcal{H}_{B}$ and

$$
\begin{aligned}
|\Omega\rangle & =\frac{1}{\sqrt{\operatorname{dim} H_{A}}} \sum_{i}|i\rangle_{A} \otimes|i\rangle_{B} \\
\omega & =|\Omega\rangle\langle\Omega|=\frac{1}{d} \sum_{i, j}|i i\rangle\langle j j|
\end{aligned}
$$

In dimension $\operatorname{dim} \mathcal{H}_{A}=2$,

$$
\omega=\frac{1}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Marginalisation: given $p_{A B}$ Partial trace: given $\rho_{A B}$

$$
p_{A}(x):=\sum_{y} p_{A B}(x, y)
$$

$$
\rho_{A}:=[\mathrm{id} \otimes \operatorname{Tr}]\left(\rho_{A B}\right)=\operatorname{Tr}_{B}\left(\rho_{A B}\right)
$$

$$
\rho_{B}:=[\operatorname{Tr} \otimes \mathrm{id}]\left(\rho_{A B}\right)=\operatorname{Tr}_{A}\left(\rho_{A B}\right)
$$

$$
p_{B}(y):=\sum_{x} p_{A B}(x, y)
$$

Example:

$$
\operatorname{Tr}_{A}(\omega)=\operatorname{Tr}_{B}(\omega)=\frac{I}{d}
$$

Measurements

Classical Quantum

Outcome set: Σ_{A} Outcome set: finite alphabet Σ
Measure operators: $M_{x} \in \mathcal{B}\left(\mathcal{H}_{A}\right)$, for $x \in \Sigma$ Axioms for POVMs (Positive Operator Valued Measure):

$$
M_{x} \geq 0 \text { and } \sum_{x} M_{x}=I_{A}
$$

$\mathbb{P}[x]=p_{A}(x) \quad \forall x \in \Sigma_{A}$

$$
\mathbb{P}[x]=\left\langle M_{x}, \rho_{A}\right\rangle=\operatorname{Tr}\left(M_{x} \rho_{A}\right)
$$

Basis measurements: fix $\left\{e_{i}\right\}$ a basis of \mathcal{H}_{A} and set

$$
M_{i}:=\left|e_{i}\right\rangle\left\langle e_{i}\right|
$$

We have then

$$
\mathbb{P}[i]=\left\langle e_{i}\left\|\rho_{A}\right\| e_{i}\right\rangle
$$

Trivial measurements: for a probability vector p, set

$$
M_{i}:=p_{i} I_{A}
$$

We have then

$$
\mathbb{P}[i]=\operatorname{Tr}\left(p_{i} I_{A} \rho_{A}\right)=p_{i}
$$

independently of ρ_{A}
Total variation distance

$$
\|p-q\|_{\mathrm{TV}}=\frac{1}{2} \sum_{x}|p(x)-q(x)|
$$

Probability measure discrimination

Given a random outcome sampled from either p or q, the optimal success probability for guessing whether it came from p or q is

$$
P^{\mathrm{opt}}(\text { success })=\frac{1}{2}\left(1+\|p-q\|_{\mathrm{TV}}\right)
$$

Trace distance (aka nuclear norm or Schatten 1norm)

$$
\|\rho-\sigma\|_{1}=\operatorname{Tr}|\rho-\sigma|=\sum_{i} s_{i}(\rho-\sigma)
$$

State discrimination [Holevo-Helstrom]
Given either ρ_{0} or ρ_{1} (with probability $1 / 2$), the optimal success probability of guessing "0" or "1" is

$$
\frac{1}{2}+\frac{1}{4}\left\|\rho_{0}-\rho_{1}\right\|_{1}
$$

Quantum

Tranformations of classical states (discrete probability measures)

Stochastic matrices aka classical channels, Markov kernels, conditional probabilities

$$
N: \mathbb{R}^{\Sigma_{A}} \rightarrow \mathbb{R}^{\Sigma_{B}}
$$

$\forall a, b \quad N_{b \mid a}:=\left\langle\delta_{b}, N\left(\delta_{a}\right)\right\rangle \geq 0$

$$
\forall a \quad \sum_{b} N_{b \mid a}=1
$$

Transformations of quantum states (density matrices)

Quantum channels

$$
\Phi: \mathcal{B}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B}\right)
$$

are completely positive

$$
\forall \mathcal{H}_{R}, \forall \rho_{A R} \quad\left[\Phi \otimes \mathrm{id}_{R}\right]\left(\rho_{A R}\right) \geq 0
$$

and trace preserving

$$
\forall \rho_{A} \quad \operatorname{Tr} \Phi\left(\rho_{A}\right)=\operatorname{Tr} \rho_{A}
$$

Classical channels embed as follows:

$$
\Phi_{N}(\rho):=\sum_{x, y} N_{y \mid x}\langle x| \rho|x\rangle|y\rangle\langle y|
$$

For classical maps, Why complete positivity?
positivity \Longleftrightarrow complete positivity
There exists positive maps

$$
P\left(\mathrm{D}\left(\mathcal{H}_{A}\right)\right) \subseteq \mathrm{D}\left(\mathcal{H}_{B}\right)
$$

that are not completely positive; e.g. the transposition map $X \mapsto X^{\top}$.
Such maps might not preserve positivity when they act on subsystems:
$[\operatorname{transp} \otimes \mathrm{id}](\omega) \nsupseteq 0$

Choi matrix

For a linear map $\Phi: A \rightarrow B$, define

$$
\begin{aligned}
C_{\Phi} & :=\sum_{i, j}|i\rangle\langle j| \otimes \Phi(|i\rangle\langle j|) \\
& =[\operatorname{id} \otimes \Phi]\left(\operatorname{dim} \mathcal{H}_{A} \cdot \omega_{A}\right) \in \mathcal{B}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)
\end{aligned}
$$

Depolarizing channel

$$
\Delta(X)=\operatorname{Tr}(X) \frac{I_{B}}{\operatorname{dim} \mathcal{H}_{B}}
$$

Unitary channel: for $U \in \mathcal{U}\left(\mathcal{H}_{A}\right)$

$$
\operatorname{Ad}_{U}(X)=U X U^{*}
$$

Measurements as channels
A POVM M can be seen as a quantum \rightarrow classical channel

$$
\Phi_{M}(\rho)=\sum_{x}\left\langle M_{x}, \rho\right\rangle|x\rangle\langle x|
$$

Choi theorem
$\Phi: A \rightarrow B$ is a quantum channel \Longleftrightarrow

$$
C_{\Phi} \geq 0 \text { and } \operatorname{Tr}_{B} C_{\Phi}=I_{A}
$$

$\operatorname{dim}($ stoch. matrices $)=\left|\Sigma_{A}\right|\left(\left|\Sigma_{B}\right|-1\right)$

Classical channels Φ_{N} have Kraus operators

$$
K_{a, b}=\sqrt{N_{b \mid a}}|b\rangle\langle a|
$$

Dilation of classical channels to deterministic

functions
Given a channel $N: A \rightarrow B$ there exist a deterministic channel $D: A E \rightarrow B$ and a random variable Z on E such that

$$
N(a)=\mathbb{E}_{z \sim Z}[D(a, z)]
$$

Extreme points
Deterministic matrices

$$
N_{b \mid a}^{(f)}=\mathbf{1}_{b=f(a)}
$$

for some function $f: \Sigma_{A} \rightarrow \Sigma_{B}$
$\operatorname{dim}(\mathrm{q} \cdot$ channels $)=\left(\operatorname{dim} \mathcal{H}_{A}\right)^{2}\left(\left(\operatorname{dim} \mathcal{H}_{B}\right)^{2}-1\right)$

Kraus theorem
$\Phi: A \rightarrow B$ is a quantum channel \Longleftrightarrow there exist operators

$$
K_{1}, \ldots, K_{r}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{B}
$$

such that

$$
\Phi(X)=\sum_{i=1}^{r} K_{i} X K_{i}^{*}
$$

and

$$
\sum_{i=1}^{r} K_{i}^{*} K_{i}=I_{A}
$$

The minimum r in such a decomposition is called the Kraus rank of the channel and it is equal to $\operatorname{rank} C_{\Phi}$
Stinespring theorem
$\Phi: A \rightarrow B$ is a quantum channel \Longleftrightarrow there exist an isometry $V: A \rightarrow B E$ such that

$$
\Phi(X)=\operatorname{Tr}_{E}\left(V X V^{*}\right)
$$

The dimension of the auxiliary space E can be taken to be the Kraus rank of Φ

Extreme points
Choi's condition: A quantum channel Φ with Kraus operators $\left\{K_{i}\right\}$ is extreme iff the set $\left\{K_{i}^{*} K_{j}\right\}$ is linearly independent

Positivity notions for quantum channels

Channel	Choi matrix
Positive $\forall X \geq 0 \Longrightarrow \Phi(X) \geq 0$	Block-positive $\forall x \in \mathcal{H}_{A}, y \in \mathcal{H}_{B} \quad\langle x \otimes y\| C_{\Phi}\|x \otimes y\rangle \geq 0$
Completely positive $\forall \mathcal{H}_{R} \quad Z_{A R} \geq 0 \Longrightarrow\left[\Phi \otimes \operatorname{id}_{R}\right]\left(Z_{A R}\right) \geq 0$	Positive semidefinite $C_{\Phi} \geq 0 \Longleftrightarrow \forall z \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}\langle z\| C_{\Phi}\|z\rangle \geq 0$
Entanglement-breaking $\forall \mathcal{H}_{R} Z_{A R} \geq 0 \Longrightarrow\left[\Phi \otimes \operatorname{id}_{R}\right]\left(Z_{A R}\right) \in \operatorname{SEP}(B, R)$	Separable $C_{\Phi} \in \operatorname{SEP}(A, B)$

Entropy

$$
H(p)=-\sum_{i} p_{i} \log p_{i}
$$

$$
S(\rho)=S(A)_{\rho}=-\operatorname{Tr}(\rho \log \rho)=H\left(\lambda_{\rho}\right)
$$

$$
H(p) \in[0, \log |\Sigma|]
$$

$$
H(p)=0 \Longleftrightarrow p=\delta_{i}
$$

$S(\rho) \in[0, \log \operatorname{dim} \mathcal{H}]$

$$
S(\rho)=0 \Longleftrightarrow \rho=|x\rangle\langle x|
$$

$$
H(p)=\log |\Sigma| \Longleftrightarrow p=\left(\frac{1}{|\Sigma|}, \ldots, \frac{1}{|\Sigma|}\right)
$$

$$
S(\rho)=\log \operatorname{dim} \mathcal{H} \Longleftrightarrow \rho=\frac{I_{A}}{\operatorname{dim} \mathcal{H}_{A}}
$$

$$
H(A \mid B)_{p}=H(A B)_{p}-H(B)_{p}
$$

Conditional entropy

$$
S(A \mid B)_{\rho}=S(A B)_{\rho}-S(B)_{\rho}
$$

Is always non-negative Can be negative

$$
\forall p \quad H(A \mid B)_{p} \geq 0
$$

$$
S(A \mid B)_{\omega}=S(\omega)-S(I / 2)=0-\log 2=-1
$$

$$
D_{\mathrm{KL}}(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

Quantum relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

if $\operatorname{ker} \sigma \subseteq \operatorname{ker} \rho$ and $+\infty$ otherwise
It is jointly convex and non-negative

$$
\forall \rho, \sigma \quad D(\rho \| \sigma) \geq 0
$$

Data-processing inequality (DPI): for all quantum channels Φ,

$$
D(\rho \| \sigma) \geq D(\Phi(\rho) \| \Phi(\sigma))
$$

Mutual information

$$
I(A: B)_{\rho}=S(A)_{\rho}+S(B)_{\rho}-S(A B)_{\rho}
$$

Is always non-negative (sub-additivity)

$$
\forall \rho_{A B} \quad I(A: B)_{\rho} \geq 0
$$

Equality $\Longleftrightarrow \rho_{A B}=\rho_{A} \otimes \rho_{B}$
Connection to relative entropy

$$
I(A: B)_{\rho}=D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)
$$

strong sub-additivity follows from

$$
D_{\mathrm{KL}}\left(p_{A B C} \| q_{A B C}\right) \geq 0
$$

where

$$
q_{A B C}(a, b, c):=\frac{p_{A B}(a, b) p_{B C}(b, c)}{p_{B}(b)}
$$

$\mathrm{DPI} \Longrightarrow$ strong sub-additivity: $\forall \rho_{A B C}$

$$
S(A B C)_{\rho}+S(B)_{\rho} \leq S(A B)_{\rho}+S(B C)_{\rho}
$$

Equivalently in terms of mutual information

$$
I(A: B C)_{\rho} \geq I(A: B)_{\rho}
$$

Source coding

(n, m, δ) compression scheme
A pair of functions $E: \Sigma^{n} \rightarrow\{0,1\}^{m}$ and $D:\{0,1\}^{m} \rightarrow \Sigma^{n}$ such that

$$
\mathbb{P}[D \circ E(X)=X] \geq 1-\delta
$$

where $X=\left(X_{1}, \ldots, X_{n}\right)$ come from a discrete memoryless source with distribution p

Achievable rate

A number $R>0$ such that for all n there exists a $\left(n, m_{n}, \delta_{n}\right)$ compression scheme such that

$$
\lim _{n \rightarrow \infty} \frac{m_{n}}{n}=R \quad \text { and } \quad \lim _{n \rightarrow \infty} \delta_{n}=0
$$

Shannon's source coding theorem
Consider a discrete memoryless source with distribution p.

Any rate $R>H(p)$ is achievable.

For any sequence of $\left(n, m_{n}, \delta_{n}\right)$ compression schemes with rate $R=\lim m_{n} / n<H(p)$, we have $\lim \delta_{n}=1$, i.e. the probability of successful decoding converges to 0 .

Proof idea: encode only typical strings A string $x \in \Sigma^{n}$ is ϵ-typical if $2^{-n(H(p)+\epsilon)}<p\left(x_{1}\right) \cdots p\left(x_{n}\right)<2^{-n(H(p)-\epsilon)}$

A sequence of tensor powers $\rho^{\otimes n}$ of a quantum state $\rho \in \mathrm{D}(\mathcal{H})$
(n, m, δ) compression scheme
A pair of quantum channels

$$
\begin{aligned}
& E: \mathcal{B}\left(\mathcal{H}^{\otimes n}\right) \rightarrow \mathcal{B}\left(\left(\mathbb{C}^{2}\right)^{\otimes m}\right) \\
& D: \mathcal{B}\left(\left(\mathbb{C}^{2}\right)^{\otimes m}\right) \rightarrow \mathcal{B}\left(\mathcal{H}^{\otimes n}\right)
\end{aligned}
$$

such that (F is the channel fidelity)

$$
F\left(D \circ E, \rho^{\otimes n}\right) \geq 1-\delta
$$

Achievable rate

Same as in the classical case

Schumacher's quantum source coding theorem
Consider a discrete quantum memoryless source associated to a quantum state $\rho \in \mathrm{D}(\mathcal{H})$

Any rate $R>H(p)$ is achievable.

For any sequence of $\left(n, m_{n}, \delta_{n}\right)$ compression schemes with rate $R=\lim m_{n} / n<H(p)$, we have $\lim \delta_{n}=1$, i.e. the probability of successful decoding converges to 0.

Proof idea: consider typical strings with respect to the eigenvalues of ρ. Encode only states supported on the typical subspace

Channel coding

Classical Quantum

(n, m, δ) coding scheme for N
A pair of functions $E:\{0,1\}^{m} \rightarrow \Sigma_{A}^{n}$ and $D: \Sigma_{B}^{n} \rightarrow\{0,1\}^{m}$ such that
$\forall i \in\{0,1\}^{m} \quad \mathbb{P}\left[D \circ N^{\times n} \circ E(i)=i\right] \geq 1-\delta$
(n, m, δ) coding scheme for Φ
An encoding map

$$
E:\{0,1\}^{m} \rightarrow \mathcal{B}\left(\mathcal{H}_{A}^{\otimes n}\right)
$$

and a measurement map

$$
D: \mathcal{B}\left(\mathcal{H}_{B}^{\otimes n}\right) \rightarrow\{0,1\}^{m}
$$

such that

$$
\forall i \in\{0,1\}^{m} \quad\left\langle D_{i}, \Phi^{\otimes n}(E(i))\right\rangle \geq 1-\delta
$$

Achievable rate

Same as in the classical case

A number $R>0$ such that for all n there exists a (n, m_{n}, δ_{n}) compression scheme such that

$$
\lim _{n \rightarrow \infty} \frac{m_{n}}{n}=R \quad \text { and } \quad \lim _{n \rightarrow \infty} \delta_{n}=0
$$

Quantum

$\mathcal{E}=\left\{p(x), \rho_{x}\right\}_{x \in \Sigma}$ with states $\rho_{x} \in \mathrm{D}(\mathcal{H})$ define

$$
\chi(\mathcal{E}):=S\left(\sum_{x \in \Sigma} p(x) \rho_{x}\right)-\sum_{x \in \Sigma} p(x) S\left(\rho_{x}\right)
$$

Holevo capacity
For a channel $\Phi: A \rightarrow B$ define

$$
\chi(\Phi)=\sup _{\left\{p(x), \rho_{x}\right\}_{x \in \Sigma}} \chi\left(\left\{p(x), \Phi\left(\rho_{x}\right)\right\}_{x \in \Sigma}\right)
$$

where the supremum is over all ensembles $\left\{p(x), \rho_{x}\right\}_{x \in \Sigma}$ with states $\rho_{x} \in \mathrm{D}\left(\mathcal{H}_{A}\right)$ and all finite alphabets Σ

Classical capacity

$C(N)=$ the maximum achievable rate for for
transmitting information using N

Shannon's channel coding theorem

$$
C(N)=\sup _{p_{A} \in \mathrm{P}\left(\Sigma_{A}\right)} I(A: B)_{p_{A B}^{N}}
$$

Classical capacity of a quantum channel
$C(\Phi)$ = the maximum achievable rate for for transmitting classical information using the quantum channel Φ

Holevo-Schumacher-Westmoreland theorem

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right)
$$

where
$p_{A B}^{N}(a, b)=p_{A}(a) N(b \mid a) \in \mathrm{P}\left(\Sigma_{A} \times \Sigma_{B}\right)$

