Classical vs Quantum Information Theory

#lectures

Sets vs Hilbert spaces

Classical	Quantum
Finite alphabet	Finite dimensional, complex Hilbert space
$\Sigma_A = \{1,2,\ldots,d\}$	$\mathcal{H}_A\cong\mathbb{C}^d= ext{span}(1 angle, 2 angle,\ldots, d angle)$
Different letters $i eq j$	Orthogonal vectors $x \perp y$

States

Classical	Quantum
Probability distributions $p\in P(\Sigma_A)$	Density matrices $ ho\in D(\mathcal{H}_A)$
$p \in \mathbb{R}^d$ such that $p_i \geq 0$ and $\sum_i p_i = 1$	$ ho \in \mathcal{B}(\mathcal{H}_A) \cong \mathcal{M}_d(\mathbb{C})$ such that $ ho$ is <i>positive semidefinite</i> $ ho \geq 0$ and <i>unit trace</i> $\operatorname{Tr} ho = 1$
	Classical states can be embedded as diagonal matrices
Extremal points: Dirac masses	Extremal points: <i>pure states</i>
$\operatorname{ext} P(\Sigma_A) = \{\delta_i : i \in \Sigma_A\}$	$\operatorname{ext}D(\mathcal{H}_A)=\{ x angle\langle x :x\in\mathcal{H}_A,\ x\ =1\}$
(real) dimension: $d-1$	(real) dimension: d^2-1
In dimension $d=2$: bits A segment $[0,1]$ $(1-p)\delta_0+p\delta_1$	In dimension $d = 2$: qubits The Bloch ball $\rho = \frac{1}{2}(I_2 + x\sigma_X + y\sigma_Y + z\sigma_Z) \text{with} (x, y, z) \le 1$ $\qquad \qquad $
The uniform distribution	The maximally mixed state
$p=\left(rac{1}{d},rac{1}{d},\ldots,rac{1}{d} ight)$	$ ho=rac{I_d}{d}=\sum_{i=1}^d i angle\langle i $

Bipartite and multipartite systems

Classical	Quantum
Joint system: cartesian product	Joint system: tensor product
×	\otimes
	Tensor product of operators

Classical	Quantum
	$A \otimes B = egin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \ a_{21}B & a_{22}B & \cdots & a_{2m}B \ dots & dots & \ddots & dots \ a_{m1}B & a_{m2}B & \cdots & a_{mm}B \end{bmatrix}$
$egin{aligned} \Sigma_{AB} &= \Sigma_A imes \Sigma_B \ &= \{(x,y) : x \in \Sigma_A ext{ and } y \in \Sigma_B \} \end{aligned}$	$egin{aligned} \mathcal{H}_{AB} &= \mathcal{H}_A \otimes \mathcal{H}_B \ &= ext{span}\{ \ket{x} \otimes \ket{y} \} \end{aligned}$
	where x and y index bases of \mathcal{H}_A and \mathcal{H}_B
Bivariate probability distributions	Bipartite density matrices
$p_{AB}(x,y)\geq 0, \sum_{x,y}p_{AB}(x,y)=1$	$ ho_{AB}\geq 0, { m Tr} ho_{AB}=1$
Product measures	Product states
$p_{AB}=p_A imes p_B$	$ ho_{AB}= ho_A\otimes ho_B$
Every state is a convex combination of product states	There exist <i>entangled states</i> = states that are not convex combinations of product states
$p_{AB} = \sum_{x,y} p_{AB}(x,y) \cdot \delta_x imes \delta_y$	separable states $ ho_{AB} = \sum_i t_i ho_A^{(i)} \otimes ho_B^{(i)} \in SEP(A,B)$
	Pure state example
	$rac{1}{\sqrt{2}}(\ket{00}+\ket{01})=\ket{0}\otimesrac{1}{\sqrt{2}}(\ket{0}+\ket{1})$
	Mixed state example
	$ ho = rac{I_A}{\dim \mathcal{H}_A} \otimes rac{I_B}{\dim \mathcal{H}_B}$
	The maximally entangled state: $\mathcal{H}_A = \mathcal{H}_B$ and
	$ \Omega angle = rac{1}{\sqrt{\dim H_A}}\sum_i i angle_A\otimes i angle_B$
	$\omega = \Omega angle \langle \Omega = rac{1}{d}\sum_{i,j} ii angle \langle jj $
	In dimension $\dim \mathcal{H}_A=2$,
	$\omega = rac{1}{2} egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{bmatrix}$
Marginalisation: given p_{AB}	Partial trace: given ρ_{AB}
$p_A(x):=\sum_y p_{AB}(x,y)$	$ ho_A:=[\mathrm{id}\otimes\mathrm{Tr}](ho_{AB})=\mathrm{Tr}_B(ho_{AB})$
	$ ho_B:=[\mathrm{Tr}\otimes\mathrm{id}](ho_{AB})=\mathrm{Tr}_A(ho_{AB})$

Classical	Quantum
$p_B(y):=\sum_x p_{AB}(x,y)$	
	Example:
	${ m Tr}_A(\omega)={ m Tr}_B(\omega)=rac{I}{d}$

Measurements

Classical	Quantum
Outcome set: Σ_A	Outcome set: finite alphabet Σ Measure operators: $M_x \in \mathcal{B}(\mathcal{H}_A)$, for $x \in \Sigma$ Axioms for <i>POVM</i> s (Positive Operator Valued Measure): $M_x \geq 0 ext{ and } \sum_x M_x = I_A$
$\mathbb{P}[x] = p_A(x) orall x \in \Sigma_A$	$\mathbb{P}[x] = \langle M_x, ho_A angle = \mathrm{Tr}(M_x ho_A)$
	Basis measurements: fix $\{e_i\}$ a basis of \mathcal{H}_A and set
	$M_i:= e_i angle\langle e_i $
	We have then
	$\mathbb{P}[i] = \langle e_i \parallel ho_A \parallel e_i angle$
	<i>Trivial measurements</i> : for a probability vector p , set
	$M_i:=p_iI_A$
	We have then
	$\mathbb{P}[i] = \mathrm{Tr}(p_i I_A ho_A) = p_i,$
	independently of $ ho_A$
Total variation distance	<i>Trace distance</i> (aka nuclear norm or Schatten 1- norm)
$\ p-q\ _{ ext{TV}} = rac{1}{2}\sum_x p(x)-q(x) $	$\ ho-\sigma\ _1={ m Tr} ho-\sigma =\sum_i s_i(ho-\sigma)$
Probability measure discriminationGiven a random outcome sampled from either p or q ,the optimal success probability for guessing whether itcame from p or q is	State discrimination [Holevo-Helstrom] Given either ρ_0 or ρ_1 (with probability 1/2), the optimal success probability of guessing "0" or "1" is
$P^{ ext{opt}}(ext{success}) = rac{1}{2}(1+\ p-q\ _{ ext{TV}})$	$\frac{1}{2} + \frac{1}{4} \ \rho_0 - \rho_1\ _1$

Channels

Classical	Quantum
Tranformations of classical states (discrete probability measures)	Transformations of quantum states (density matrices)
Stochastic matrices	Quantum channels
aka classical channels, Markov kernels, conditional probabilities	$\Phi:\mathcal{B}(\mathcal{H}_A) ightarrow\mathcal{B}(\mathcal{H}_B)$
$N:\mathbb{R}^{\Sigma_A} o\mathbb{R}^{\Sigma_B}$	are completely positive
$orall a,b N_{b a}:=\langle \delta_b, N(\delta_a) angle \geq 0$	$orall \mathcal{H}_R, orall ho_{AR} [\Phi \otimes \mathrm{id}_R](ho_{AR}) \geq 0$
$orall a \sum N_{b a} = 1$	and trace preserving
b	$orall ho_A { m Tr} \Phi(ho_A) = { m Tr} ho_A$
	Classical channels embed as follows:
	$\Phi_N(ho):=\sum_{x,y}N_{y x}raket{x ho x}{ y angle}{y }$
For classical maps, positivity \iff complete positivity	Why complete positivity?
	There exists <i>positive maps</i>
	$P(D(\mathcal{H}_A))\subseteqD(\mathcal{H}_B)$
	that are not completely positive; e.g. the <i>transposition</i>
	map $X \mapsto X^{+}$. Such maps might not preserve positivity when they act on subsystems:
	$[\mathrm{transp}\otimes\mathrm{id}](\omega) ot\ge 0$
$N=\sum_{a,b}N_{b a} b angle\langle a $	Choi matrix For a linear map $\Phi: A ightarrow B$, define
~,~	$C_{\Phi}:=\sum i angle \langle j \otimes \Phi(i angle \langle j)$
$C_{\Phi_N} = \sum_{a,b} N_{b a} b angle \langle b \otimes a angle \langle a $	$\overset{i,j}{=} [\mathrm{id} \otimes \Phi](\dim \mathcal{H}_A \cdot \omega_A) \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B)$
Uniform random walk	Depolarizing channel
$N_{b a}=rac{1}{ \Sigma_B }$	$\Delta(X) = { m Tr}(X) rac{I_B}{\dim {\mathcal H}_B}$
Permutation channel: for $\pi\in\mathfrak{S}(\Sigma_A)$	Unitary channel: for $U \in \mathcal{U}(\mathcal{H}_A)$
$N_{b a}^{(\pi)}=1_{b=\pi(a)}$	$\mathrm{Ad}_U(X)=UXU^*$
	Measurements as channels A POVM M can be seen as a quantum \rightarrow classical channel
	$\Phi_M(ho) = \sum_x \langle M_x, ho angle x angle \langle x $
$N: A ightarrow B$ is a stoch. matrix \iff	Choi theorem
$N_{b a} \geq 0 ext{ and } \sum N_{b a} = 1$	$\Phi:A ightarrow B$ is a quantum channel \iff
	$C_{\Phi} \geq 0 ext{ and } \operatorname{Tr}_B C_{\Phi} = I_A$

Classical	Quantum
$\dim(ext{stoch. matrices}) = \Sigma_A (\Sigma_B -1)$	$\dim(ext{q. channels}) = (\dim \mathcal{H}_A)^2 ig((\dim \mathcal{H}_B)^2 - 1ig)$
Classical channels Φ_N have Kraus operators $K_{a,b}=\sqrt{N_{b a}} b angle\langle a $	Kraus theorem $\Phi: A \rightarrow B$ is a quantum channel \iff there exist operators $K_1, \dots, K_r: \mathcal{H}_A \rightarrow \mathcal{H}_B$ such that $\Phi(X) = \sum_{i=1}^r K_i X K_i^*$
	and $\sum_{i=1}^r K_i^*K_i = I_A$ The minimum r in such a decomposition is called the <i>Kraus rank</i> of the channel and it is equal to rank C_{Φ}
$\begin{array}{l} \textit{Dilation of classical channels to deterministic} \\ \textit{functions} \\ \textit{Given a channel } N: A \rightarrow B \textit{ there exist a} \\ \textit{deterministic channel } D: AE \rightarrow B \textit{ and a random} \\ \textit{variable } Z \textit{ on } E \textit{ such that} \\ N(a) = \mathbb{E}_{z \sim Z} \Big[D(a,z) \Big] \end{array}$	$\begin{array}{l} \textit{Stinespring theorem} \\ \Phi: A \rightarrow B \text{ is a quantum channel } \Longleftrightarrow \text{ there exist an} \\ \text{isometry } V: A \rightarrow BE \text{ such that} \\ \Phi(X) = \operatorname{Tr}_E(VXV^*) \\ \end{array}$ The dimension of the auxiliary space <i>E</i> can be taken to be the Kraus rank of Φ
Extreme points $Deterministic \ matrices$ $N_{b a}^{(f)} = 1_{b=f(a)}$ for some function $f: \Sigma_A o \Sigma_B$	Extreme points <i>Choi's condition</i> : A quantum channel Φ with Kraus operators $\{K_i\}$ is extreme iff the set $\{K_i^*K_j\}$ is linearly independent

Positivity notions for quantum channels

Channel	Choi matrix
Positive	Block-positive
$orall X \geq 0 \implies \Phi(X) \geq 0$	$orall x \in \mathcal{H}_A, y \in \mathcal{H}_B \langle x \otimes y C_\Phi x \otimes y angle \geq 0$
Completely positive	Positive semidefinite
$orall \mathcal{H}_R Z_{AR} \geq 0 \implies [\Phi \otimes \operatorname{id}_R](Z_{AR}) \geq 0$	$C_{\Phi} \geq 0 \iff orall z \in \mathcal{H}_A \otimes \mathcal{H}_B raket{z C_{\Phi} z} \geq 0$
Entanglement-breaking	Separable
$orall \mathcal{H}_R Z_{AR} \geq 0 \implies [\Phi \otimes \operatorname{id}_R](Z_{AR}) \in SEP(B,R)$	$C_{\Phi} \in SEP(A,B)$

Entropy

Classical	Quantum
Shannon entropy	von Neumann entropy
$H(p) = -\sum_i p_i \log p_i$	$S(ho)=S(A)_ ho=-{ m Tr}(ho\log ho)=H(\lambda_ ho)$

Classical	Quantum
$H(p) \in [0, \log \Sigma]$	$S(ho)\in [0,\log\dim\mathcal{H}]$
$H(p)=0\iff p=\delta_i$	$S(ho)=0\iff ho= x angle\langle x $
$H(p) = \log \Sigma \iff p = \Big(rac{1}{ \Sigma }, \dots, rac{1}{ \Sigma }\Big)$	$S(ho) = \log \dim \mathcal{H} \iff ho = rac{I_A}{\dim \mathcal{H}_A}$
Conditional entropy	Conditional entropy
$H(A B)_p = H(AB)_p - H(B)_p$	$S(A B)_ ho=S(AB)_ ho-S(B)_ ho$
Is always non-negative	Can be negative
$orall p \qquad H(A B)_p \geq 0$	$S(A B)_\omega=S(\omega)-S(I/2)=0-\log 2=-1$
Kullback–Leibler divergence	Quantum relative entropy
$D_{ ext{KL}}(p q) = \sum p_i \log rac{p_i}{q_i}$	$D(ho \sigma) = { m Tr} ho(\log ho - \log\sigma)$
i Yi	$if\ker\sigma\subseteq\ker\rhoand+\inftyotherwise$
	It is <i>jointly convex</i> and non-negative
	$orall ho, \sigma D(ho \sigma) \geq 0$
	Data-processing inequality (DPI): for all quantum channels Φ ,
	$D(ho \sigma) \geq D(\Phi(ho) \Phi(\sigma))$
	Mutual information
	$I(A:B)_ ho=S(A)_ ho+S(B)_ ho-S(AB)_ ho$
	Is always non-negative (sub-additivity)
	$orall ho_{AB} \qquad I(A:B)_ ho \geq 0$
	Equality $\iff \rho_{AB} = \rho_A \otimes \rho_B$
	Connection to relative entropy
	$I(A:B)_ ho=D(ho_{AB} ho_A\otimes ho_B)$
strong sub-additivity follows from	$DPI \implies strong \ sub-additivity: \forall \rho_{ABC}$
$D_{ ext{KL}}(p_{ABC} q_{ABC}) \geq 0$	$S(ABC)_ ho+S(B)_ ho\leq S(AB)_ ho+S(BC)_ ho$
where	
$p_{AB}(a,b)p_{BC}(b,c)$	Equivalently in terms of mutual information
$q_{ABC}(a, b, c) := - p_B(b)$	$I(A:BC)_ ho \geq I(A:B)_ ho$

Source coding

Classical	Quantum
Discrete memoryless information source A sequence of i.i.d. random variables with common distribution $p \in P(\Sigma)$	Discrete memoryless source of quantum information

Classical	A sequence of tensor powers $\rho^{\otimes n}$ of a
	quantum state $ ho\inD(\mathcal{H})$
(n, m, δ) compression scheme A pair of functions $E : \Sigma^n \to \{0, 1\}^m$ and $D : \{0, 1\}^m \to \Sigma^n$ such that $\mathbb{P}\Big[D \circ E(X) = X\Big] \ge 1 - \delta$ where $X = (X_1, \dots, X_n)$ come from a discrete memoryless source with distribution p	(n, m, δ) compression scheme A pair of quantum channels $E: \mathcal{B}(\mathcal{H}^{\otimes n}) \to \mathcal{B}((\mathbb{C}^2)^{\otimes m})$ $D: \mathcal{B}((\mathbb{C}^2)^{\otimes m}) \to \mathcal{B}(\mathcal{H}^{\otimes n})$ such that (<i>F</i> is the channel fidelity) $F(D \circ E, \rho^{\otimes n}) \ge 1 - \delta$
$\begin{array}{l} \mbox{Achievable rate}\\ \mbox{A number } R>0 \ \mbox{such that for all }n \ \mbox{there exists a } (n,m_n,\delta_n)\\ \mbox{ compression scheme such that}\\ \mbox{lim} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Achievable rate Same as in the classical case
$\label{eq:shannon's source coding theorem} Shannon's source with distribution p.$ Consider a discrete memoryless source with distribution p. Any rate $R > H(p)$ is achievable. For any sequence of (n, m_n, δ_n) compression schemes with rate $R = \lim m_n/n < H(p)$, we have $\lim \delta_n = 1$, i.e. the probability of successful decoding converges to 0.	$\label{eq:schumacher's quantum source coding theorem} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Proof idea: encode only <i>typical strings</i> A string $x\in\Sigma^n$ is ϵ -typical if $2^{-n(H(p)+\epsilon)} < p(x_1)\cdots p(x_n) < 2^{-n(H(p)-\epsilon)}$	Proof idea: consider typical strings with respect to the eigenvalues of ρ . Encode only states supported on the <i>typical subspace</i>

Channel coding

Classical	Quantum
(n,m,δ) coding scheme for N A pair of functions $E: \{0,1\}^m o \Sigma_A^n$ and $D: \Sigma_B^n o \{0,1\}^m$ such that $orall i \in \{0,1\}^m \mathbb{P}\Big[D \circ N^{ imes n} \circ E(i) = i\Big] \ge 1 - \delta$	(n, m, δ) coding scheme for Φ An encoding map $E: \{0, 1\}^m o \mathcal{B}(\mathcal{H}_A^{\otimes n})$ and a measurement map $D: \mathcal{B}(\mathcal{H}_B^{\otimes n}) o \{0, 1\}^m$ such that $orall i \in \{0, 1\}^m \langle D_i, \Phi^{\otimes n}(E(i)) angle \ge 1 - \delta$
$\begin{array}{l} \mbox{Achievable rate}\\ \mbox{A number } R>0 \ \mbox{such that for all }n \ \mbox{there exists a}\\ (n,m_n,\delta_n) \ \mbox{compression scheme such that}\\ \mbox{lim} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Achievable rate Same as in the classical case
	Holevo information Given an ensemble of quantum states

Classical	Quantum
	$\mathcal{E}=\{p(x), ho_x\}_{x\in\Sigma}$ with states $ ho_x\inD(\mathcal{H})$ define $\chi(\mathcal{E}):=Sig(\sum_{x\in\Sigma}p(x) ho_xig)-\sum_{x\in\Sigma}p(x)S(ho_x)$
	Holevo capacity For a channel $\Phi : A \to B$ define $\chi(\Phi) = \sup_{\{p(x), \rho_x\}_{x \in \Sigma}} \chi(\{p(x), \Phi(\rho_x)\}_{x \in \Sigma})$ where the supremum is over all ensembles $\{p(x), \rho_x\}_{x \in \Sigma}$ with states $\rho_x \in D(\mathcal{H}_A)$ and all finite alphabets Σ
$Classical \ capacity$ C(N) = the maximum achievable rate for for transmitting information using N	Classical capacity of a quantum channel $C(\Phi)$ = the maximum achievable rate for for transmitting classical information using the quantum channel Φ
Shannon's channel coding theorem $C(N) = \sup_{p_A \in P(\Sigma_A)} I(A:B)_{p_{AB}^N}$ where $p_{AB}^N(a,b) = p_A(a)N(b a) \in P(\Sigma_A imes \Sigma_B)$	Holevo-Schumacher-Westmoreland theorem $C(\Phi) = \lim_{n o \infty} rac{1}{n} \chi(\Phi^{\otimes n})$