
Classical vs Quantum Information Theory

#lectures

Sets vs Hilbert spaces

Classical Quantum

Finite alphabet Finite dimensional, complex Hilbert space

ΣA = {1, 2, … , d} HA ≅Cd = span(|1⟩, |2⟩, … , |d⟩)

Different letters i ≠ j Orthogonal vectors x ⊥ y

States

Classical Quantum

Probability distributions 
p ∈ P(ΣA)

Density matrices ρ ∈ D(HA)

p ∈ Rd such that pi ≥ 0 and 
∑i pi = 1

ρ ∈ B(HA) ≅Md(C) such that ρ is positive semidefinite ρ ≥ 0 and unit 
trace Tr ρ = 1

Classical states can be embedded as diagonal matrices

Extremal points: Dirac masses Extremal points: pure states

ext P(ΣA) = {δi : i ∈ ΣA} ext D(HA) = {|x⟩⟨x| : x ∈ HA, ∥x∥ = 1}

(real) dimension: d − 1 (real) dimension: d2 − 1

In dimension d = 2: bits
A segment [0, 1]

(1 − p)δ0 + pδ1

In dimension d = 2: qubits
The Bloch ball

ρ =
1
2

(I2 + xσX + yσY + zσZ)  with  ∥(x, y, z)∥ ≤ 1

Pure states have ∥(x, y, z)∥ = 1

The uniform distribution

p = (
1
d

,
1
d

, … ,
1
d
)

The maximally mixed state

ρ =
Id

d
=

d

∑
i=1

|i⟩⟨i|

Bipartite and multipartite systems

Classical Quantum

Joint system: cartesian product

×

Joint system: tensor product

⊗

Tensor product of operators



Classical Quantum

A ⊗ B =

where x and y  index bases of HA and HB

Bivariate probability distributions Bipartite density matrices

pAB(x, y) ≥ 0, ∑
x,y

pAB(x, y) = 1 ρAB ≥ 0, Tr ρAB = 1

Product measures Product states

pAB = pA × pB ρAB = ρA ⊗ ρB

Every state is a convex combination of 
product states

There exist entangled states = states that are not convex 
combinations of product states

pAB = ∑
x,y

pAB(x, y) ⋅ δx × δy
separable states

ρAB = ∑
i

tiρ
(i)
A

⊗ ρ
(i)
B

∈ SEP(A,B)

Pure state example

1

√2
(|00⟩+ |01⟩) = |0⟩⊗

1

√2
(|0⟩+ |1⟩)

Mixed state example

ρ =
IA

dimHA

⊗
IB

dimHB

The maximally entangled state: HA = HB and

|Ω⟩ =
1

√dimHA

∑
i

|i⟩A ⊗ |i⟩B

ω = |Ω⟩⟨Ω| =
1
d
∑
i,j

|ii⟩⟨jj|

In dimension dimHA = 2,

ω =
1
2

Marginalisation: given pAB

pA(x) := ∑
y

pAB(x, y)

Partial trace: given ρAB

ρA := [id ⊗ Tr](ρAB) = TrB(ρAB)

ρB := [Tr ⊗ id](ρAB) = TrA(ρAB)

⎡⎢⎣a11B a12B ⋯ a1mB

a21B a22B ⋯ a2mB

⋮ ⋮ ⋱ ⋮
am1B am2B ⋯ ammB

⎤⎥⎦ΣAB = ΣA × ΣB

= {(x, y) : x ∈ ΣA and y ∈ ΣB}
HAB = HA ⊗ HB

= span{|x⟩⊗ |y⟩}

⎡⎢⎣1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤⎥⎦



Classical Quantum

pB(y) := ∑
x

pAB(x, y)

Example: 

TrA(ω) = TrB(ω) =
I

d

Measurements

Classical Quantum

Outcome set: ΣA Outcome set: finite alphabet Σ
Measure operators: Mx ∈ B(HA), for x ∈ Σ
Axioms for POVMs (Positive Operator Valued 
Measure):

Mx ≥ 0 and ∑
x

Mx = IA

P[x] = pA(x) ∀x ∈ ΣA P[x] = ⟨Mx, ρA⟩ = Tr(MxρA)

Basis measurements: fix {ei} a basis of HA and 
set 

Mi := |ei⟩⟨ei|

We have then 

P[i] = ⟨ei ∥ ρA ∥ ei⟩

Trivial measurements: for a probability vector p, set

Mi := piIA

We have then 

P[i] = Tr(piIAρA) = pi,

independently of ρA

Total variation distance Trace distance (aka nuclear norm or Schatten 1-
norm)

∥p − q∥TV =
1
2
∑
x

|p(x) − q(x)| ∥ρ − σ∥1 = Tr |ρ − σ| = ∑
i

si(ρ − σ)

Probability measure discrimination
Given a random outcome sampled from either p or q, 

the optimal success probability for guessing whether it 
came from p or q is  

P opt(success) =
1
2

(1 + ∥p − q∥TV)

State discrimination [Holevo-Helstrom]
Given either ρ0 or ρ1 (with probability 1/2), the 
optimal success probability of guessing "0" or "1" 
is

1
2

+
1
4

∥ρ0 − ρ1∥1

Channels



Classical Quantum

Tranformations of classical states (discrete 
probability measures)

Transformations of quantum states (density matrices)

Stochastic matrices
aka classical channels, Markov kernels, 

conditional probabilities

N : RΣA → RΣB

∀a, b Nb|a := ⟨δb,N(δa)⟩ ≥ 0

∀a ∑
b

Nb|a = 1

Quantum channels

Φ : B(HA) → B(HB)

are completely positive

∀HR, ∀ρAR [Φ ⊗ idR](ρAR) ≥ 0

and trace preserving

∀ρA Tr Φ(ρA) = Tr ρA

Classical channels embed as follows: 

ΦN(ρ) := ∑
x,y

Ny|x ⟨x|ρ|x⟩|y⟩⟨y|

For classical maps, 
positivity ⟺  complete positivity

Why complete positivity?

There exists positive maps

P(D(HA)) ⊆ D(HB)

that are not completely positive; e.g. the transposition 
mapX ↦ X⊤.
Such maps might not preserve positivity when they act 
on subsystems:

[transp ⊗ id](ω) ≱ 0

N = ∑
a,b

Nb|a|b⟩⟨a|

CΦN
= ∑

a,b

Nb|a|b⟩⟨b| ⊗ |a⟩⟨a|

Choi matrix
For a linear map Φ : A → B, define

Uniform random walk

Nb|a =
1

|ΣB|

Depolarizing channel

Δ(X) = Tr(X)
IB

dimHB

Permutation channel: for π ∈ S(ΣA)

N
(π)
b|a = 1b=π(a)

Unitary channel: for U ∈ U(HA)

AdU(X) = UXU ∗

Measurements as channels
A POVM M can be seen as a quantum → classical 
channel 

ΦM(ρ) = ∑
x

⟨Mx, ρ⟩|x⟩⟨x|

N : A → B is a stoch. matrix ⟺

Nb|a ≥ 0 and ∑
b

Nb|a = 1

Choi theorem
Φ : A → B is a quantum channel ⟺

CΦ ≥ 0 and  TrB CΦ = IA

CΦ := ∑
i,j

|i⟩⟨j| ⊗ Φ(|i⟩⟨j|)

= [id ⊗Φ](dimHA ⋅ ωA) ∈ B(HA ⊗ HB)



Classical Quantum

dim(stoch. matrices) = |ΣA|(|ΣB| − 1) dim(q. channels) = (dimHA)2((dimHB)2 − 1)

Classical channels ΦN  have Kraus operators  

Ka,b = √Nb|a|b⟩⟨a|

Kraus theorem
Φ : A → B is a quantum channel ⟺  there exist 
operators 

K1, … ,Kr : HA → HB

such that

Φ(X) =
r

∑
i=1

KiXK ∗
i

and

r

∑
i=1

K ∗
i Ki = IA

The minimum r in such a decomposition is called the 
Kraus rank of the channel and it is equal to rankCΦ

Dilation of classical channels to deterministic 
functions

Given a channel N : A → B there exist a 
deterministic channel D : AE → B and a random 

variable Z on  E such that 

N(a) = Ez∼Z[D(a, z)]

Stinespring theorem
Φ : A → B is a quantum channel ⟺  there exist an 
isometry V : A → BE such that 

Φ(X) = TrE(VXV ∗)

The dimension of the auxiliary space E can be taken to 
be the Kraus rank of Φ

Extreme points
Deterministic matrices

N
(f)
b|a = 1b=f(a)

 for some function f : ΣA → ΣB

Extreme points
Choi's condition: A quantum channel Φ with Kraus 
operators {Ki} is extreme iff the set {K ∗

i Kj} is linearly 
independent

Positivity notions for quantum channels

Channel Choi matrix

Positive 

∀X ≥ 0 ⟹ Φ(X) ≥ 0

Block-positive 

∀x ∈ HA, y ∈ HB ⟨x ⊗ y|CΦ|x ⊗ y⟩ ≥ 0

Completely positive 

∀HR ZAR ≥ 0 ⟹ [Φ ⊗ idR](ZAR) ≥ 0

Positive semidefinite 

CΦ ≥ 0 ⟺ ∀z ∈ HA ⊗ HB ⟨z|CΦ|z⟩ ≥ 0

Entanglement-breaking 

∀HR ZAR ≥ 0 ⟹ [Φ ⊗ idR](ZAR) ∈ SEP(B,R)

Separable 

CΦ ∈ SEP(A,B)

Entropy

Classical Quantum

Shannon entropy von Neumann entropy

H(p) = −∑
i

pi log pi S(ρ) = S(A)ρ = − Tr(ρ log ρ) = H(λρ)



Classical Quantum

H(p) ∈ [0, log |Σ|] S(ρ) ∈ [0, log dimH]

H(p) = 0 ⟺ p = δi S(ρ) = 0 ⟺ ρ = |x⟩⟨x|

H(p) = log |Σ| ⟺ p = (
1

|Σ|
, … ,

1
|Σ|

) S(ρ) = log dimH ⟺ ρ =
IA

dimHA

Conditional entropy

H(A|B)p = H(AB)p − H(B)p

Conditional entropy

S(A|B)ρ = S(AB)ρ − S(B)ρ

Is always non-negative

∀p H(A|B)p ≥ 0

Can be negative

S(A|B)ω = S(ω) − S(I/2) = 0 − log 2 = −1

Kullback–Leibler divergence

DKL(p||q) = ∑
i

pi log
pi

qi

Quantum relative entropy

D(ρ||σ) = Tr ρ(log ρ − logσ)

 if kerσ ⊆ ker ρ and +∞ otherwise

It is jointly convex and non-negative

∀ρ,σ D(ρ||σ) ≥ 0

Data-processing inequality (DPI): for all quantum channels Φ,

D(ρ||σ) ≥ D(Φ(ρ)||Φ(σ))

Mutual information

I(A : B)ρ = S(A)ρ + S(B)ρ − S(AB)ρ

Is always non-negative (sub-additivity)

∀ρAB I(A : B)ρ ≥ 0

Equality ⟺ ρAB = ρA ⊗ ρB

Connection to relative entropy

I(A : B)ρ = D(ρAB||ρA ⊗ ρB)

strong sub-additivity follows from  

DKL(pABC||qABC) ≥ 0

 where  

qABC(a, b, c) :=
pAB(a, b)pBC(b, c)

pB(b)

DPI ⟹ strong sub-additivity: ∀ρABC

S(ABC)ρ + S(B)ρ ≤ S(AB)ρ + S(BC)ρ

Equivalently in terms of mutual information

I(A : BC)ρ ≥ I(A : B)ρ

Source coding

Classical Quantum

Discrete memoryless information source
A sequence of i.i.d. random variables with common 

distribution p ∈ P(Σ)

Discrete memoryless source of quantum 
information



Classical QuantumA sequence of tensor powers ρ⊗n of a 
quantum state ρ ∈ D(H)

(n,m, δ) compression scheme
A pair of functions E : Σn → {0, 1}m and D : {0, 1}m → Σn

such that

P[D ∘ E(X) = X] ≥ 1 − δ

where X = (X1, … ,Xn) come from a discrete memoryless 
source with distribution p

(n,m, δ) compression scheme
A pair of quantum channels

such that (F  is the channel fidelity)

F(D ∘ E, ρ⊗n) ≥ 1 − δ

Achievable rate
A number R > 0  such that for all n there exists a (n,mn, δn)

 compression scheme  such that

lim
n→∞

mn

n
= R and lim

n→∞
δn = 0

Achievable rate
Same as in the classical case

Shannon’s source coding theorem
Consider a discrete memoryless source with distribution p. 

Any rate R > H(p) is achievable. 

For any sequence of (n,mn, δn) compression schemes with 
rate R = limmn/n < H(p), we have lim δn = 1, i.e. the 
probability of successful decoding converges to 0.

Schumacher’s quantum source coding theorem
Consider a discrete quantum memoryless 
source associated to a quantum state ρ ∈ D(H)
.

Any rate R > H(p) is achievable. 

For any sequence of (n,mn, δn) compression 
schemes with rate R = limmn/n < H(p), we 
have lim δn = 1, i.e. the probability of 
successful decoding converges to 0.

Proof idea: encode only typical strings
A string x ∈ Σn is ϵ-typical if 

2−n(H(p)+ϵ) < p(x1) ⋯ p(xn) < 2−n(H(p)−ϵ)

Proof idea: consider typical strings with 
respect to the eigenvalues of ρ. Encode only 
states supported on the typical subspace

Channel coding

Classical Quantum

(n,m, δ) coding scheme for N
A pair of functions E : {0, 1}m → Σn

A
 and 

D : Σn
B → {0, 1}m such that

∀i ∈ {0, 1}m P[D ∘ N ×n ∘ E(i) = i] ≥ 1 − δ

(n,m, δ) coding scheme for Φ
An encoding map

E : {0, 1}m → B(H⊗n
A

)

 and a measurement map 

D : B(H⊗n
B

) → {0, 1}m

such that 

∀i ∈ {0, 1}m ⟨Di, Φ⊗n(E(i))⟩ ≥ 1 − δ

Achievable rate
A number R > 0  such that for all n there exists a 

(n,mn, δn) compression scheme  such that

lim
n→∞

mn

n
= R and lim

n→∞
δn = 0

Achievable rate
Same as in the classical case

Holevo information
Given an ensemble of quantum states  

E : B(H⊗n) → B((C2)⊗m)

D : B((C2)⊗m) → B(H⊗n)



Classical Quantum

E = {p(x), ρx}x∈Σ with states ρx ∈ D(H)  define 

χ(E) := S(∑
x∈Σ

p(x)ρx) −∑
x∈Σ

p(x)S(ρx)

Holevo capacity
For a channel Φ : A → B define 

χ(Φ) = sup
{p(x),ρx}x∈Σ

χ({p(x), Φ(ρx)}x∈Σ)

where the supremum is over all ensembles 
{p(x), ρx}x∈Σ with states ρx ∈ D(HA) and all finite 
alphabets Σ

Classical capacity
C(N) = the maximum achievable rate for for 

transmitting information using N

Classical capacity of a quantum channel
C(Φ) = the maximum achievable rate for for 
transmitting classical information using the quantum 
channel Φ

Shannon’s channel coding theorem

C(N) = sup
pA∈P(ΣA)

I(A : B)pNAB

where 

pNAB(a, b) = pA(a)N(b|a) ∈ P(ΣA × ΣB)

Holevo-Schumacher-Westmoreland theorem

C(Φ) = lim
n→∞

1
n
χ(Φ⊗n)


