
Holevo theorem

Holevo's theorem gives a nice, computable upper bound to the accessible

information present in an ensemble of quantum states.

Suppose that Alice prepares some classical ensemble E = {p(x), ρx}x∈Σ and then

sends the quantum state to Bob, without telling him the the classical index x,

sampled from the distribution p. Bob's task is to determine the classical index x

by performing some measurement on the quantum system he received from

Alice. The quantity that governs how much information he can learn about

random variable X if he possesses random variable Y  (the outcome of his

measurement) is the mutual information I(X : Y ).

Remark. Note that the task is different that the state discrimination problem:

Definition. Given an ensemble {p(x), ρx}x∈Σ, define its accessible information as

the maximum correlation (measured by the Mutual information) than can be

extracted from it, by using a single measurement. If we call that measurement

M = (My), we have

pXY (x, y) = pX(x)pY |X(y|x)

with

pY |X(y|x) = ⟨My, ρx⟩

We define

Iacc := sup
My

I(X : Y )pXY

Theorem. We have the following upper bound: for any ensemble E

Iacc(E) ≤ χ(E) := S(∑
x

p(x)ρx)−∑
x

p(x)S(ρx)

In general, it is very hard to compute Iacc hence the importance of the upper

bound above.

here we want to maximize the information Bob learns about X

in state discrimination we want to maximize the probability of success that

Bob guesses X correctly



Proof.

Start from Alice's state, which encodes the ensemble:

ρAQ = ∑
x

p(x)|x⟩⟨x| ⊗ ρx

ρQ = ∑
x

p(x)ρx

Bob then performs a POVM on Q, yielding the state

σAB = [idA ⊗MQ→B](ρAQ) = ∑
x

p(x)|x⟩⟨x| ⊗ ⟨My, ρx⟩|y⟩⟨y|

The resulting distribution is

pAB(x, y) = ∑
x,y

p(x) ⟨My, ρx⟩

We have then

finishing the proof.

I(A : B)p = I(A : B)σ = D(σAB||σA ⊗ σB)

= D([idA ⊗MQ→B](ρAQ)||ρA ⊗ MQ→B(ρQ))

≤ D(ρAQ||ρA ⊗ ρQ)

= S(A)ρ + S(Q)ρ − S(AQ)ρ

= χ(E)


